\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{Connections, Curvature, and Cohomology} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{chernweil_theory}{}\paragraph*{{$\infty$-Chern-Weil theory}}\label{chernweil_theory} [[!include infinity-Chern-Weil theory - contents]] \hypertarget{differential_cohomology}{}\paragraph*{{Differential cohomology}}\label{differential_cohomology} [[!include differential cohomology - contents]] \hypertarget{lie_theory}{}\paragraph*{{$\infty$-Lie theory}}\label{lie_theory} [[!include infinity-Lie theory - contents]] This entry is about the book \begin{itemize}% \item [[Werner Greub]], [[Stephen Halperin]], [[Ray Vanstone]] \emph{Connections, Curvature, and Cohomology} Academic Press (1973) \end{itemize} on [[Chern-Weil theory]]: [[principal bundle]]s with [[connection on a bundle|connections]] and their [[characteristic class]]es. Related books are \begin{itemize}% \item [[Theodore Frankel]], \emph{[[The Geometry of Physics - An Introduction]]} \end{itemize} \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{volume_i}{Volume I}\dotfill \pageref*{volume_i} \linebreak \noindent\hyperlink{0_algebraic_and_analytic_preliminaries}{0 Algebraic and analytic preliminaries}\dotfill \pageref*{0_algebraic_and_analytic_preliminaries} \linebreak \noindent\hyperlink{1_basic_concepts}{1 Basic concepts}\dotfill \pageref*{1_basic_concepts} \linebreak \noindent\hyperlink{ii_vector_bundles}{II Vector bundles}\dotfill \pageref*{ii_vector_bundles} \linebreak \noindent\hyperlink{iii_tangent_bundle_and_differential_forms}{III Tangent bundle and differential forms}\dotfill \pageref*{iii_tangent_bundle_and_differential_forms} \linebreak \noindent\hyperlink{iv_calculus_of_differential_forms}{IV Calculus of differential forms}\dotfill \pageref*{iv_calculus_of_differential_forms} \linebreak \noindent\hyperlink{v_de_rham_cohomology}{V De Rham cohomology}\dotfill \pageref*{v_de_rham_cohomology} \linebreak \noindent\hyperlink{vi_mapping_degree}{VI Mapping degree}\dotfill \pageref*{vi_mapping_degree} \linebreak \noindent\hyperlink{vii_integration_over_the_fiber}{VII Integration over the fiber}\dotfill \pageref*{vii_integration_over_the_fiber} \linebreak \noindent\hyperlink{viii_cohomology_of_sphere_bundles}{VIII Cohomology of sphere bundles}\dotfill \pageref*{viii_cohomology_of_sphere_bundles} \linebreak \noindent\hyperlink{ix_cohomology_of_vector_bundles}{IX Cohomology of vector bundles}\dotfill \pageref*{ix_cohomology_of_vector_bundles} \linebreak \noindent\hyperlink{x_the_lefschetz_class_of_a_manifold}{X The Lefschetz class of a manifold}\dotfill \pageref*{x_the_lefschetz_class_of_a_manifold} \linebreak \noindent\hyperlink{appendix_a_the_exponential_map}{Appendix A The exponential map}\dotfill \pageref*{appendix_a_the_exponential_map} \linebreak \noindent\hyperlink{volume_ii}{Volume II}\dotfill \pageref*{volume_ii} \linebreak \noindent\hyperlink{0_algebraic_and_analytic_preliminaries_2}{0 Algebraic and analytic preliminaries}\dotfill \pageref*{0_algebraic_and_analytic_preliminaries_2} \linebreak \noindent\hyperlink{i_lie_groups}{I Lie groups}\dotfill \pageref*{i_lie_groups} \linebreak \noindent\hyperlink{ii_subgroups_and_homogeneous_spaces}{II Subgroups and homogeneous spaces}\dotfill \pageref*{ii_subgroups_and_homogeneous_spaces} \linebreak \noindent\hyperlink{iii_transformation_groups}{III Transformation groups}\dotfill \pageref*{iii_transformation_groups} \linebreak \noindent\hyperlink{iv_invariant_cohomology}{IV Invariant cohomology}\dotfill \pageref*{iv_invariant_cohomology} \linebreak \noindent\hyperlink{v_bundles_with_structrue_group}{V Bundles with structrue group}\dotfill \pageref*{v_bundles_with_structrue_group} \linebreak \noindent\hyperlink{vi_principal_connections_and_the_weil_homomorphism}{VI Principal connections and the Weil homomorphism}\dotfill \pageref*{vi_principal_connections_and_the_weil_homomorphism} \linebreak \noindent\hyperlink{vii_linear_connections}{VII Linear connections}\dotfill \pageref*{vii_linear_connections} \linebreak \noindent\hyperlink{viii_characteristic_homomorphism_for_bundles}{VIII Characteristic homomorphism for $\Sigma$-bundles}\dotfill \pageref*{viii_characteristic_homomorphism_for_bundles} \linebreak \noindent\hyperlink{ix_pontrjagin_pfaffian_chern_classes}{IX Pontrjagin, Pfaffian, Chern classes}\dotfill \pageref*{ix_pontrjagin_pfaffian_chern_classes} \linebreak \noindent\hyperlink{x_the_gaussbonnetchern_theorem}{X The Gauss-Bonnet-Chern theorem}\dotfill \pageref*{x_the_gaussbonnetchern_theorem} \linebreak \noindent\hyperlink{appendix_a_characteristic_coefficients_and_the_pfaffian}{Appendix A Characteristic coefficients and the Pfaffian}\dotfill \pageref*{appendix_a_characteristic_coefficients_and_the_pfaffian} \linebreak \noindent\hyperlink{volume_iii}{Volume III}\dotfill \pageref*{volume_iii} \linebreak \noindent\hyperlink{0_algebraic_preliminaries}{0 Algebraic preliminaries}\dotfill \pageref*{0_algebraic_preliminaries} \linebreak \noindent\hyperlink{i_spectral_sequences}{I Spectral sequences}\dotfill \pageref*{i_spectral_sequences} \linebreak \noindent\hyperlink{ii_koszul_complexes_of_spaces_and_algebras}{II Koszul complexes of $P$-spaces and $P$-algebras}\dotfill \pageref*{ii_koszul_complexes_of_spaces_and_algebras} \linebreak \noindent\hyperlink{iii_koszul_complexes_of_differential_algebras}{III Koszul complexes of $P$-differential algebras}\dotfill \pageref*{iii_koszul_complexes_of_differential_algebras} \linebreak \noindent\hyperlink{iv_lie_algebras_and_differential_spaces}{IV Lie algebras and differential spaces}\dotfill \pageref*{iv_lie_algebras_and_differential_spaces} \linebreak \noindent\hyperlink{v_cohomology_of_lie_algebras_and_lie_groups}{V Cohomology of Lie algebras and Lie groups}\dotfill \pageref*{v_cohomology_of_lie_algebras_and_lie_groups} \linebreak \noindent\hyperlink{vi_the_weil_alebra}{VI The Weil alebra}\dotfill \pageref*{vi_the_weil_alebra} \linebreak \noindent\hyperlink{vii_operation_of_a_lie_algebra_in_a_graded_differential_algebra}{VII Operation of a Lie algebra in a graded differential algebra}\dotfill \pageref*{vii_operation_of_a_lie_algebra_in_a_graded_differential_algebra} \linebreak \noindent\hyperlink{viii_algebraic_connections_and_principal_bundles}{VIII Algebraic connections and principal bundles}\dotfill \pageref*{viii_algebraic_connections_and_principal_bundles} \linebreak \noindent\hyperlink{ix_cohomology_of_operations_and_principal_bundles}{IX Cohomology of operations and principal bundles}\dotfill \pageref*{ix_cohomology_of_operations_and_principal_bundles} \linebreak \noindent\hyperlink{x_subalgebras}{X Subalgebras}\dotfill \pageref*{x_subalgebras} \linebreak \noindent\hyperlink{xi_homogeneous_spaces}{XI Homogeneous spaces}\dotfill \pageref*{xi_homogeneous_spaces} \linebreak \noindent\hyperlink{xii_operation_of_a_lie_algebra_on_a_pair}{XII Operation of a Lie algebra on a pair}\dotfill \pageref*{xii_operation_of_a_lie_algebra_on_a_pair} \linebreak \noindent\hyperlink{appendix_a_characteristic_coefficients_and_the_pfaffian_2}{Appendix A Characteristic coefficients and the Pfaffian}\dotfill \pageref*{appendix_a_characteristic_coefficients_and_the_pfaffian_2} \linebreak \hypertarget{volume_i}{}\subsection*{{Volume I}}\label{volume_i} \hypertarget{0_algebraic_and_analytic_preliminaries}{}\subsubsection*{{0 Algebraic and analytic preliminaries}}\label{0_algebraic_and_analytic_preliminaries} \begin{itemize}% \item [[linear algebra]] \item [[homological algebra]] \item [[analysis]], [[topology]] \end{itemize} \hypertarget{1_basic_concepts}{}\subsubsection*{{1 Basic concepts}}\label{1_basic_concepts} \begin{itemize}% \item [[topological manifold]] \item [[smooth manifold]] \item [[fiber bundle]] \end{itemize} \hypertarget{ii_vector_bundles}{}\subsubsection*{{II Vector bundles}}\label{ii_vector_bundles} \begin{itemize}% \item [[vector bundle]] \item [[section]] \end{itemize} \hypertarget{iii_tangent_bundle_and_differential_forms}{}\subsubsection*{{III Tangent bundle and differential forms}}\label{iii_tangent_bundle_and_differential_forms} \begin{itemize}% \item [[tangent bundle]] \item [[vector field]] \item [[differential form]] \item [[orientation]] \end{itemize} \hypertarget{iv_calculus_of_differential_forms}{}\subsubsection*{{IV Calculus of differential forms}}\label{iv_calculus_of_differential_forms} \begin{itemize}% \item [[Cartan calculus]] \item [[integration]] \item [[Stokes theorem]] \end{itemize} \hypertarget{v_de_rham_cohomology}{}\subsubsection*{{V De Rham cohomology}}\label{v_de_rham_cohomology} \begin{itemize}% \item [[de Rham cohomology]] \item [[Poincare duality]] \item [[Künneth theorem]] \item [[de Rham theorem]] \end{itemize} \hypertarget{vi_mapping_degree}{}\subsubsection*{{VI Mapping degree}}\label{vi_mapping_degree} \hypertarget{vii_integration_over_the_fiber}{}\subsubsection*{{VII Integration over the fiber}}\label{vii_integration_over_the_fiber} \begin{itemize}% \item [[fiber integration]] \end{itemize} \hypertarget{viii_cohomology_of_sphere_bundles}{}\subsubsection*{{VIII Cohomology of sphere bundles}}\label{viii_cohomology_of_sphere_bundles} \begin{itemize}% \item [[Euler class]] \end{itemize} \hypertarget{ix_cohomology_of_vector_bundles}{}\subsubsection*{{IX Cohomology of vector bundles}}\label{ix_cohomology_of_vector_bundles} \begin{itemize}% \item [[Thom isomorphism]] \end{itemize} \hypertarget{x_the_lefschetz_class_of_a_manifold}{}\subsubsection*{{X The Lefschetz class of a manifold}}\label{x_the_lefschetz_class_of_a_manifold} \begin{itemize}% \item [[Lefschetz isomorphism]] \end{itemize} \hypertarget{appendix_a_the_exponential_map}{}\subsubsection*{{Appendix A The exponential map}}\label{appendix_a_the_exponential_map} \hypertarget{volume_ii}{}\subsection*{{Volume II}}\label{volume_ii} \hypertarget{0_algebraic_and_analytic_preliminaries_2}{}\subsubsection*{{0 Algebraic and analytic preliminaries}}\label{0_algebraic_and_analytic_preliminaries_2} \hypertarget{i_lie_groups}{}\subsubsection*{{I Lie groups}}\label{i_lie_groups} \begin{itemize}% \item [[Lie group]] \end{itemize} \hypertarget{ii_subgroups_and_homogeneous_spaces}{}\subsubsection*{{II Subgroups and homogeneous spaces}}\label{ii_subgroups_and_homogeneous_spaces} \begin{itemize}% \item [[homogeneous space]] \end{itemize} \hypertarget{iii_transformation_groups}{}\subsubsection*{{III Transformation groups}}\label{iii_transformation_groups} \hypertarget{iv_invariant_cohomology}{}\subsubsection*{{IV Invariant cohomology}}\label{iv_invariant_cohomology} \begin{itemize}% \item [[equivariant cohomology]] \end{itemize} \hypertarget{v_bundles_with_structrue_group}{}\subsubsection*{{V Bundles with structrue group}}\label{v_bundles_with_structrue_group} \begin{itemize}% \item [[principal bundle]] \end{itemize} \hypertarget{vi_principal_connections_and_the_weil_homomorphism}{}\subsubsection*{{VI Principal connections and the Weil homomorphism}}\label{vi_principal_connections_and_the_weil_homomorphism} \begin{itemize}% \item [[connection on a bundle]] \item [[Chern-Weil homomorphism]] \end{itemize} \hypertarget{vii_linear_connections}{}\subsubsection*{{VII Linear connections}}\label{vii_linear_connections} \hypertarget{viii_characteristic_homomorphism_for_bundles}{}\subsubsection*{{VIII Characteristic homomorphism for $\Sigma$-bundles}}\label{viii_characteristic_homomorphism_for_bundles} \hypertarget{ix_pontrjagin_pfaffian_chern_classes}{}\subsubsection*{{IX Pontrjagin, Pfaffian, Chern classes}}\label{ix_pontrjagin_pfaffian_chern_classes} \begin{itemize}% \item [[Pontryagin class]] \item [[Pfaffian]] \item [[Chern class]] \end{itemize} \hypertarget{x_the_gaussbonnetchern_theorem}{}\subsubsection*{{X The Gauss-Bonnet-Chern theorem}}\label{x_the_gaussbonnetchern_theorem} \begin{itemize}% \item [[Gauss-Bonnet theorem]] \end{itemize} \hypertarget{appendix_a_characteristic_coefficients_and_the_pfaffian}{}\subsubsection*{{Appendix A Characteristic coefficients and the Pfaffian}}\label{appendix_a_characteristic_coefficients_and_the_pfaffian} \hypertarget{volume_iii}{}\subsection*{{Volume III}}\label{volume_iii} \hypertarget{0_algebraic_preliminaries}{}\subsubsection*{{0 Algebraic preliminaries}}\label{0_algebraic_preliminaries} \hypertarget{i_spectral_sequences}{}\subsubsection*{{I Spectral sequences}}\label{i_spectral_sequences} \begin{itemize}% \item [[fiber sequence]] \item [[spectral sequence]] \end{itemize} \hypertarget{ii_koszul_complexes_of_spaces_and_algebras}{}\subsubsection*{{II Koszul complexes of $P$-spaces and $P$-algebras}}\label{ii_koszul_complexes_of_spaces_and_algebras} \hypertarget{iii_koszul_complexes_of_differential_algebras}{}\subsubsection*{{III Koszul complexes of $P$-differential algebras}}\label{iii_koszul_complexes_of_differential_algebras} \hypertarget{iv_lie_algebras_and_differential_spaces}{}\subsubsection*{{IV Lie algebras and differential spaces}}\label{iv_lie_algebras_and_differential_spaces} \begin{itemize}% \item [[Lie algebra]] \end{itemize} \hypertarget{v_cohomology_of_lie_algebras_and_lie_groups}{}\subsubsection*{{V Cohomology of Lie algebras and Lie groups}}\label{v_cohomology_of_lie_algebras_and_lie_groups} \begin{itemize}% \item [[Lie algebra cohomology]] \item [[Lie group cohomology]] \end{itemize} \hypertarget{vi_the_weil_alebra}{}\subsubsection*{{VI The Weil alebra}}\label{vi_the_weil_alebra} \begin{itemize}% \item [[Weil algebra]] \end{itemize} \hypertarget{vii_operation_of_a_lie_algebra_in_a_graded_differential_algebra}{}\subsubsection*{{VII Operation of a Lie algebra in a graded differential algebra}}\label{vii_operation_of_a_lie_algebra_in_a_graded_differential_algebra} \hypertarget{viii_algebraic_connections_and_principal_bundles}{}\subsubsection*{{VIII Algebraic connections and principal bundles}}\label{viii_algebraic_connections_and_principal_bundles} \hypertarget{ix_cohomology_of_operations_and_principal_bundles}{}\subsubsection*{{IX Cohomology of operations and principal bundles}}\label{ix_cohomology_of_operations_and_principal_bundles} \hypertarget{x_subalgebras}{}\subsubsection*{{X Subalgebras}}\label{x_subalgebras} \hypertarget{xi_homogeneous_spaces}{}\subsubsection*{{XI Homogeneous spaces}}\label{xi_homogeneous_spaces} \hypertarget{xii_operation_of_a_lie_algebra_on_a_pair}{}\subsubsection*{{XII Operation of a Lie algebra on a pair}}\label{xii_operation_of_a_lie_algebra_on_a_pair} \hypertarget{appendix_a_characteristic_coefficients_and_the_pfaffian_2}{}\subsubsection*{{Appendix A Characteristic coefficients and the Pfaffian}}\label{appendix_a_characteristic_coefficients_and_the_pfaffian_2} category: reference \end{document}