\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{Connes-Lott-Chamseddine-Barrett model} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{physics}{}\paragraph*{{Physics}}\label{physics} [[!include physicscontents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{related_entries}{Related entries}\dotfill \pageref*{related_entries} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \noindent\hyperlink{ReferencesReview}{Review}\dotfill \pageref*{ReferencesReview} \linebreak \noindent\hyperlink{original_articles}{Original articles}\dotfill \pageref*{original_articles} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} The \emph{Connes-Lott-Chamseddine-Barrett model} (\hyperlink{ConnesLott91}{Connes-Lott 91}, \hyperlink{Barrett07}{Barrett 07}, \hyperlink{ChamseddineConnesMarcolli07}{Chamseddine-Connes-Marcolli 07}) is a [[spectral triple]] that spectrally encodes a [[spacetime]] which is the [[product]] of 4d [[Minkowski spacetime]] $X$ with a \emph{[[non-geometric background|non-geometric]]} ([[Isbell duality|formal dually]]: [[non-commutative geometry]]) space $F$ whose classical dimension is that of a point, but which has [[KO-dimension]] 6 (mod 8). Hence this is a non-commutative version of a [[Kaluza-Klein compactification]] of a spacetime of [[KO-dimension]] $4 + 6$. (See also the discussion at \emph{[[2-spectral triple]]}). As in all ([[supersymmetry|super]]-)[[KK-compactification|Kaluza-Klein theory]], what is pure [[pseudo-Riemannian geometry]] (albeit ``[[spectral geometry|spectral]]'') in 4+6 (KO-)dimension, hence pure [[gravity]], effectively looks like a configuration of [[Einstein-Yang-Mills-Dirac-Higgs theory]] down in 4 dimensions, hence of [[gravity]] coupled to [[gauge fields]] and [[fermions]] and a [[Higgs boson]]. The interest in the model lies in the fact that a comparatively simple algebraic choice in the spectral triple of the Connes-Lott-Chamseddine model this way reproduces the [[standard model of particle physics]], and does so in quite some fine detail (even if some issues remain open). For instance the fiber space $F$ is modeled as the formal dual to the algebra \begin{displaymath} \mathbb{C} \oplus \mathbb{H}_L \oplus \mathbb{H}_R \oplus M_3(\mathbb{C}) \end{displaymath} which is the [[direct sum]] of the $\mathbb{R}$-[[associative algebra|algebras]] of [[complex numbers]], [[quaternions]] and $3x3$ complex [[matrices|matrix algebra]]. Moreover, the entire field content in one [[generation of fundamental particles|generation]] of [[fermions]] (i.e. [[electrons]], [[quarks]], [[neutrinos]]) is claimed to be encoded precisely in the [[bimodule]] over this algebra which is the direct sum of all inequivalent irreducible odd bimodules (\hyperlink{Connes06}{Connes 06, prop. 2.2 - prop 2.5}). The Connes-Lott models realize a non-commutative version of [[gauge-Higgs unification]]. \hypertarget{related_entries}{}\subsection*{{Related entries}}\label{related_entries} \begin{itemize}% \item [[Gepner model]] \item [[higher category theory and physics]]: \emph{\href{higher+category+theory+and+physics#SpecStandModAndGravity}{Spectral standard model and gravity}} \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} \hypertarget{ReferencesReview}{}\subsubsection*{{Review}}\label{ReferencesReview} \begin{itemize}% \item Robert Brout, \emph{Notes on Connes' Construction of the Standard Model}, Nucl. Phys. Proc. Suppl. 65 (1998) 3-15 (\href{https://arxiv.org/abs/hep-th/9706200}{arXiv:hep-th/9706200}) \item Agostino Devastato, Maxim Kurkov, [[Fedele Lizzi]], \emph{Spectral Noncommutative Geometry, Standard Model and all that} (\href{https://arxiv.org/abs/1906.09583}{arXiv:1906.09583}) \end{itemize} Relation to the ``[[neutrino]]-paradigm'': \begin{itemize}% \item [[José Gracia-Bondia]], \emph{On Marshak's and Connes' views of chirality}, in: [[E. C. G. Sudarshan]] (ed.), \emph{A Gift of Prophecy -- Essays in Celebration of the Life of [[Robert Eugene Marshak]]}, pp. 208-217, World Scientific (1995) (\href{https://arxiv.org/abs/hep-th/9706200}{arXiv:hep-th/9706200}, \href{https://doi.org/10.1142/9789812831408_0017}{doi:10.1142/9789812831408\_0017}) \end{itemize} Exposition highlighting the relation to [[KK-compactification]] and [[string theory]]-[[perturbative string theory vacuum|vacua]] ([[2-spectral triples]]) includes \begin{itemize}% \item [[Urs Schreiber]], \emph{\href{https://www.physicsforums.com/insights/spectral-standard-model-string-compactifications/}{Spectral Standard Model and String Compactifications}}, 2016 \end{itemize} Other commentary in view of [[D-brane]]-physics: \begin{itemize}% \item [[John Iliopoulos]], \emph{Gauge Theories and non-Commutative Geometry: A review}, EPJ Web Conf. Volume 182, 2018 6th International Conference on New Frontiers in Physics (ICNFP 2017) (\href{https://doi.org/10.1051/epjconf/201818202055}{doi:10.1051/epjconf/201818202055}) \end{itemize} See also \begin{itemize}% \item Wikipedia, \emph{\href{https://en.wikipedia.org/wiki/Noncommutative_standard_model}{Noncommutative standard model}} \end{itemize} \hypertarget{original_articles}{}\subsubsection*{{Original articles}}\label{original_articles} The basic mechanism was originally laid out in \begin{itemize}% \item [[Alain Connes]], \emph{Gravity coupled with matter and foundation of non-commutative geometry}, Commun.Math.Phys. 182 (1996) 155-176 (\href{https://arxiv.org/abs/hep-th/9603053}{arXiv:hep-th/9603053}) \end{itemize} (see also the references at \emph{[[spectral action]]}). The early version of the model is due to \begin{itemize}% \item [[Alain Connes]], [[John Lott]], \emph{Particle models and noncommutative geometry}, Nuclear Physics B - Proceedings Supplements 18(2): 29-47 (1991) (\href{https://deepblue.lib.umich.edu/handle/2027.42/29524}{web}) \end{itemize} The modern version of the model that produces the correct fermionic content (and finds the [[KO-dimension]] of the compactification space to be 6 mod 8) is due to \begin{itemize}% \item [[John Barrett]], \emph{A Lorentzian version of the non-commutative geometry of the standard model of particle physics}, J.Math.Phys.48:012303,2007 (\href{http://arxiv.org/abs/hep-th/0608221}{arXiv:hep-th/0608221}) \item [[Alain Connes]], \emph{Noncommutative Geometry and the standard model with neutrino mixing}, JHEP0611:081,2006 (\href{https://arxiv.org/abs/hep-th/0608226}{arXiv:hep-th/0608226}) \item [[Ali Chamseddine]], [[Alain Connes]], [[Matilde Marcolli]], \emph{Gravity and the standard model with neutrino mixing}, Adv.Theor.Math.Phys.11:991-1089,2007 (\href{http://arxiv.org/abs/hep-th/0610241}{arXiv:hep-th/0610241}) \end{itemize} A more succinct version of the axioms of the model is claimed in \begin{itemize}% \item [[Latham Boyle]], [[Shane Farnsworth]], \emph{Non-Commutative Geometry, Non-Associative Geometry and the Standard Model of Particle Physics} New J. Phys. 16, 123027 (2014) (\href{http://arxiv.org/abs/1401.5083}{arXiv:1401.5083}) \item [[Shane Farnsworth]], [[Latham Boyle]], \emph{Rethinking Connes' approach to the standard model of particle physics via non-commutative geometry}, New J. Phys. 17, 023021 (2015) (\href{https://arxiv.org/abs/1408.5367}{arXiv:1408.5367}) \item Christian Brouder, Nadir Bizi, Fabien Besnard, \emph{The Standard Model as an extension of the noncommutative algebra of forms} (\href{https://arxiv.org/abs/1504.03890}{arXiv:1504.03890}) \end{itemize} Introduction of a [[scalar field]] to fix the prediction of the [[Higgs particle]] [[mass]]: \begin{itemize}% \item [[Ali Chamseddine]], [[Alain Connes]], \emph{Resilience of the Spectral Standard Model}, JHEP 1209 (2012) 104 (\href{https://arxiv.org/abs/1208.1030}{arXiv:1208.1030}) \end{itemize} Implementation of [[Pati-Salam model]] ($SU(5)$-[[GUT]]): \begin{itemize}% \item [[Ali Chamseddine]], [[Alain Connes]], Walter D. van Suijlekom, \emph{Beyond the Spectral Standard Model: Emergence of Pati-Salam Unification}, JHEP 1311 (2013) 132 (\href{https://arxiv.org/abs/1304.8050}{arXiv:1304.8050}) \item Hosein Karimi Khozani, \emph{Symmetry Breaking and Proton Decay in Spectral Pati-Salam Model} (\href{https://arxiv.org/abs/1905.04533}{arXiv:1905.04533}) \end{itemize} and specifically discussion of [[leptoquarks]] and possible relation to [[flavour anomalies]]: \begin{itemize}% \item Ufuk Aydemir, Djordje Minic, Chen Sun, Tatsu Takeuchi, \emph{$B$-decay anomalies and scalar leptoquarks in unified Pati-Salam models from noncommutative geometry}, JHEP 09 (2018) 117 (\href{https://arxiv.org/abs/1804.05844}{arXiv:1804.05844}) \end{itemize} Relation to actual [[quantum gravity]] induced by quantized maps from [[spacetime]] to the [[4-sphere]] (see also at \emph{[[Cohomotopy]]}) is claimed in \begin{itemize}% \item [[Ali Chamseddine]], [[Alain Connes]], Viatcheslav Mukhanov, \emph{Quanta of Geometry: Noncommutative Aspects}, Phys. Rev. Lett. 114 (2015) 9, 091302 (\href{https://arxiv.org/abs/1409.2471}{arXiv:1409.2471}) \item [[Ali Chamseddine]], [[Alain Connes]], Viatcheslav Mukhanov, \emph{Geometry and the Quantum: Basics}, JHEP 12 (2014) 098 (\href{https://arxiv.org/abs/1411.0977}{arXiv:1411.0977}) \item [[Alain Connes]], section 4 of \emph{Geometry and the Quantum}, in \emph{Foundations of Mathematics and Physics One Century After Hilbert}, Springer 2018. 159-196 (\href{https://arxiv.org/abs/1703.02470}{arXiv:1703.02470}, \href{https://www.springer.com/gp/book/9783319648125}{doi:10.1007/978-3-319-64813-2}) \end{itemize} [[!redirects Connes-Lott-Chamseddine-Barrett models]] [[!redirects Connes-Lott-Chamseddine model]] [[!redirects Connes-Lott-Chamseddine models]] [[!redirects Connes-Lott model]] [[!redirects Connes-Lott models]] [[!redirects non-commutative standard model]] [[!redirects non-commutative standard models]] \end{document}