\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{Coq} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{type_theory}{}\paragraph*{{Type theory}}\label{type_theory} [[!include type theory - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{applications}{Applications}\dotfill \pageref*{applications} \linebreak \noindent\hyperlink{FormalizationOfSetBasedMathematics}{Formalization of set-based mathematics}\dotfill \pageref*{FormalizationOfSetBasedMathematics} \linebreak \noindent\hyperlink{formalized_proofs}{Formalized proofs}\dotfill \pageref*{formalized_proofs} \linebreak \noindent\hyperlink{HomotopyTypeTheory}{Homotopy type theory}\dotfill \pageref*{HomotopyTypeTheory} \linebreak \noindent\hyperlink{related_entries}{Related entries}\dotfill \pageref*{related_entries} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \noindent\hyperlink{ReferencesGeneral}{General}\dotfill \pageref*{ReferencesGeneral} \linebreak \noindent\hyperlink{learning_coq}{Learning Coq}\dotfill \pageref*{learning_coq} \linebreak \noindent\hyperlink{applications_to_formal_mathematics}{Applications to formal mathematics}\dotfill \pageref*{applications_to_formal_mathematics} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} The computer software \emph{Coq} ``runs'' the formal [[foundations]]-language \emph{[[dependent type theory|dependent]] [[type theory]]} and serves in particular as a formal [[proof management system]]. It provides a formal language to write mathematical [[definitions]], executable [[programs]] and [[theorems]] together with an environment for semi-interactive development of machine-checked [[proofs]], i.e. for [[certified programming]]. Coq is named after [[Thierry Coquand]], and follows a tradition of naming languages after animals (compare OCaml). \hypertarget{applications}{}\subsection*{{Applications}}\label{applications} Computer systems such as Coq and [[Agda]] have been used to give machine-assisted and machine-verified proofs of extraordinary length, such as of the [[four-colour theorem]] and the [[Kepler conjecture]]. More generally, they are being used to formalise and machine-verify large parts of mathematics as such, see the section \emph{\hyperlink{FormalizationOfSetBasedMathematics}{Formalization of set-based mathematics}} below. One striking insight by [[Vladimir Voevodsky]] was that Coq naturally lends itself also to a formalization of higher mathematics that is founded not on sets, but on [[higher category theory]] and [[homotopy theory]]. For this see below the section \emph{\hyperlink{HomotopyTypeTheory}{Homotopy type theory}}. \hypertarget{FormalizationOfSetBasedMathematics}{}\subsubsection*{{Formalization of set-based mathematics}}\label{FormalizationOfSetBasedMathematics} Projects include \begin{itemize}% \item \hyperlink{ForMath}{ForMath} \item \hyperlink{MathClasses}{MathClasses} \end{itemize} \hypertarget{formalized_proofs}{}\subsubsection*{{Formalized proofs}}\label{formalized_proofs} Major [[theorems]] whose [[proofs]] have been fully formalized in Coq include \begin{itemize}% \item [[Feit-Thompson theorem]] \end{itemize} \hypertarget{HomotopyTypeTheory}{}\subsubsection*{{Homotopy type theory}}\label{HomotopyTypeTheory} For Coq-projects in [[homotopy type theory]] see the section \href{homotopy+type+theory#Code}{Code}. \hypertarget{related_entries}{}\subsection*{{Related entries}}\label{related_entries} Coq uses the \emph{[[Gallina specification language]]} for specifying [[theories]]. It uses a version of the [[calculus of constructions]] to implement [[natural deduction]]. [[!include proof assistants and formalization projects -- list]] \hypertarget{references}{}\subsection*{{References}}\label{references} \hypertarget{ReferencesGeneral}{}\subsubsection*{{General}}\label{ReferencesGeneral} \begin{itemize}% \item \href{http://coq.inria.fr/}{Coq home page} \item \href{https://x80.org/rhino-coq/}{JsCoq}, a ready-to-use online Coq environment \item \href{https://x80.org/rhino-hott/}{JsHoTTCoq}, a ready-to-use online [[HoTT]] Coq environment \item \href{http://coq.inria.fr/cocorico}{Cocorico}, the Coq wiki \item \href{https://github.com/HoTT/HoTT/wiki}{HoTT Coq wiki} \item \href{https://github.com/coq/coq/blob/beedccef9ddc8633c705d7c5ee2f1bbbb3ec8a47/dev/doc/README-V1-V5}{history of Coq} \item Russell O’Connor, \emph{\href{http://r6.ca/blog/20091101T231201Z.html}{Believing In-Consistency}} (On whether the consistency of Coq is believable, given that [[ordinal analysis]] techniques are nowhere near able to handle such strong systems.) \end{itemize} \hypertarget{learning_coq}{}\subsubsection*{{Learning Coq}}\label{learning_coq} To get an idea how to use Coq from Emacs, there are [[Andrej Bauer]]`s \emph{Video tutorials for the Coq proof assistant} (\href{http://math.andrej.com/2011/02/22/video-tutorials-for-the-coq-proof-assistant/}{web}). Yet properly learning Coq can be quite daunting, luckily the right material can help a lot: \begin{enumerate}% \item [[Benjamin Pierce]]`s \href{http://www.cis.upenn.edu/~bcpierce/sf/}{Software Foundations} is probably the most elementary introduction to Coq and functional progamming. The book is written in Coq so you can directly open the source files in CoqIDE and step through them to see what is going on and solve the exercises. \item In a similar style, [[Andrej Bauer]] and [[Peter LeFanu Lumsdaine]] wrote a nice \href{https://github.com/andrejbauer/Homotopy/tree/master/OberwolfachTutorial}{Coq tutorial} (\href{https://github.com/andrejbauer/Homotopy/blob/master/OberwolfachTutorial/univalence.pdf}{pdf}) on \hyperlink{HomotopyTypeTheory}{homotopy type theory}. See also \emph{[[Oberwolfach HoTT-Coq tutorial]]}. \item [[Adam Chlipala]]`s trimmed down version of \href{http://adam.chlipala.net/papers/CpdtJFR/}{Certified Programming with Dependent Types} explains more advanced Coq techniques. \end{enumerate} \hypertarget{applications_to_formal_mathematics}{}\subsubsection*{{Applications to formal mathematics}}\label{applications_to_formal_mathematics} On [[ForMath]]: \begin{itemize}% \item [[Thierry Coquand]], \emph{ForMath: Formalisation of Mathematics} research project (\href{http://wiki.portal.chalmers.se/cse/pmwiki.php/ForMath/ForMath}{web}) \item Eelis van der Weegen, [[Bas Spitters]], Robbert Krebbers, Matthieu Sozeau, Tom Prince, [[Jelle Herold]], \emph{Math Classes}, Coq Library for basic mathematical structures (\href{http://math-classes.org/}{web}) \end{itemize} Formalization of [[synthetic geometry|synthetic]] [[Euclidean geometry]]: \begin{itemize}% \item [[Gabriel Braun]], [[Pierre Boutry]], [[Julien Narboux]], \emph{\href{http://geocoq.github.io/GeoCoq/}{GeoCoq}}, \emph{\href{http://gabrielbraun.free.fr/Geometry/Tarski/}{La g\'e{}om\'e{}trie de Tarski en Coq}} \end{itemize} Formalization of [[internal categories in homotopy type theory]]: \begin{itemize}% \item [[Jason Gross]], [[Adam Chlipala]], [[David Spivak]], \emph{Experience Implementing a Performant Category-Theory Library in Coq} (\href{http://arxiv.org/abs/1401.7694}{arXiv:1401.7694}) \end{itemize} category: software [[!redirects coq]] \end{document}