\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{Courant algebroid} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{lie_theory}{}\paragraph*{{$\infty$-Lie theory}}\label{lie_theory} [[!include infinity-Lie theory - contents]] \hypertarget{symplectic_geometry}{}\paragraph*{{Symplectic geometry}}\label{symplectic_geometry} [[!include symplectic geometry - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{history}{History}\dotfill \pageref*{history} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{lie_algebras_of_compact_type}{Lie algebras of compact type}\dotfill \pageref*{lie_algebras_of_compact_type} \linebreak \noindent\hyperlink{standard_courant_algebroid_and_gerbes}{Standard Courant algebroid and $U(1)$-gerbes}\dotfill \pageref*{standard_courant_algebroid_and_gerbes} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{generalized_complex_geometry}{Generalized complex geometry}\dotfill \pageref*{generalized_complex_geometry} \linebreak \noindent\hyperlink{chernsimons_element_and_courant_model}{Chern-Simons element and Courant $\sigma$-model}\dotfill \pageref*{chernsimons_element_and_courant_model} \linebreak \noindent\hyperlink{lagrangian_submanifolds_and_dirac_structures}{Lagrangian submanifolds and Dirac structures}\dotfill \pageref*{lagrangian_submanifolds_and_dirac_structures} \linebreak \noindent\hyperlink{RelationToAtiyahGroupoids}{Relation to Atiyah Lie 2-algebroid and quantomorphism 2-group}\dotfill \pageref*{RelationToAtiyahGroupoids} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} A \textbf{Courant algebroid} -- or better: \textbf{Courant Lie 2-algebroid} -- (named after [[Theodore Courant]]) is precisely a [[symplectic Lie n-algebroid|symplectic Lie 2-algebroid]] (\hyperlink{RoytenbergStructure}{Roytenberg}): it is a [[L-infinity algebroid|Lie 2-algebroid]] $\mathfrak{P}$ whose [[Chevalley-Eilenberg algebra]] $CE(\mathfrak{P})$ is equipped with the structure of a [[Poisson n-algebra|Poisson 3-algebra]] whose Poisson bracket \begin{displaymath} \{-,-\} : CE(\mathfrak{P})\otimes CE(\mathfrak{P}) \to CE(\mathfrak{P}) \end{displaymath} of degree -2 is non-degenerate. Therefore the [[differential]] $d_{CE(\mathfrak{P})}$ on $CE(\mathfrak{P})$ has a [[Hamiltonian]] with respect to this bracket in that there is an element $\Theta \in CE(\mathfrak{P})$ such that \begin{displaymath} d_{CE(\mathfrak{P})} = \{\Theta, -\} \,. \end{displaymath} \hypertarget{history}{}\subsection*{{History}}\label{history} The concept of Courant algebroids was originally introduced by [[Irene Dorfman]] and [[Ted Courant]] to study [[geometric quantization]] in the presence of constraints. Later it was considered by Liu, [[Alan Weinstein]] and [[Ping Xu]] in the study of [[double Lie algebroids]]. In these parts of the literature Courant algebroids are considered in the form of [[Lie algebroid]]s with relaxed axioms on the bracket. Even of this type there are two different definitions: \begin{itemize}% \item in one there is a skew-symmetric bracket which fails to satisfy a Jacobi identity by a coherent term -- this is the Courant bracket definition proper; \item in the other there is a bracket which satisfies a Jacobi identity but is skew-symmetric only up to a correction term -- this is the Dorfman version. \end{itemize} So there are several different ways to present the structure encoded in a Courant algebroid. The picture that seems to be emerging is that the \emph{true} meaning of the notoin of Courant algebroids is given by the notion of [[n-symplectic manifold|2-symplectic manifold]]s. Moreover, the way [[Lie algebroid]]s may be expressed in terms of [[Lie-Rinehart algebra]]s, Courant algebroids yield [[Courant-Dorfman algebra]]s. \vspace{.5em} \hrule \vspace{.5em} (\ldots{} need to say more about the way the Courant Lie algebroid is obtained from a Lie bialgebroid by derived brackets \ldots{}) \vspace{.5em} \hrule \vspace{.5em} \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \hypertarget{lie_algebras_of_compact_type}{}\subsubsection*{{Lie algebras of compact type}}\label{lie_algebras_of_compact_type} A Courant Lie 2-algebroid over the point is precisely an ordinary [[Lie algebra]] $\mathfrak{g}$ that is equipped with a quadratic and non-degenerate [[invariant polynomial]]. \hypertarget{standard_courant_algebroid_and_gerbes}{}\subsubsection*{{Standard Courant algebroid and $U(1)$-gerbes}}\label{standard_courant_algebroid_and_gerbes} The [[standard Courant algebroid]] of a [[manifold]] $X$ is the one which \begin{itemize}% \item as a [[vector bundle]] with extra structure is $E = T X\oplus T^* X$, the fiberwise direct sum of the [[tangent bundle]] and the cotangent bundle; with \begin{itemize}% \item bilinear form \begin{displaymath} \langle X + \xi , Y +\eta \rangle = \eta(X) + \xi(Y) \end{displaymath} \end{itemize} for $X,Y \in \Gamma(T X)$ and $\xi, \eta \in \Gamma(T^* X)$ \begin{itemize}% \item brackets \begin{displaymath} [X + \xi, Y + \eta] = [X,Y] + \mathcal{L}_X \eta - \mathcal{L}_Y \xi + \frac{1}{2} d (\eta(X) - \xi(Y)) \end{displaymath} where $\mathcal{L}_X \eta = \{d,\iota_X\} \eta$ denotes the [[Lie derivative]] of the 1-form $\eta$ by the vector field $X$. \end{itemize} \item as a [[dg-manifold]] is $\Pi T^* \Pi T X$, the shifted cotangent bundle of the [[shifted tangent bundle]], where the [[differential]] is on each local [[coordinate patch]] $\mathbb{R}^n \simeq U \subset X$ with coordinates $\{x^i\}$ in degree 0, $\{d x^i\}$ and $\{\theta_i\}$ in degree 1 and $\{p_i\}$ in degree 2 given by \begin{displaymath} \begin{aligned} d_C &= d_{dR} + p_i \frac{\partial}{\partial \theta_i} \\ &= dx^i \frac{\partial}{\partial x^i } + p_i \frac{\partial}{\partial \theta_i} \end{aligned} \,. \end{displaymath} \end{itemize} Such a standard Courant algebroid may be understood as the higher analog of the [[Atiyah Lie algebroid]] of a line bundle. See below in \emph{\hyperlink{RelationToAtiyahGroupoids}{Relation to Atiyah groupoids}}. \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{generalized_complex_geometry}{}\subsubsection*{{Generalized complex geometry}}\label{generalized_complex_geometry} The study of Courant algebroids is to a large extent known as [[generalized complex geometry]], where the Courant algebroid appears as the [[generalized tangent bundle]]. \hypertarget{chernsimons_element_and_courant_model}{}\subsubsection*{{Chern-Simons element and Courant $\sigma$-model}}\label{chernsimons_element_and_courant_model} As every [[symplectic Lie n-algebroid]] the defining [[invariant polynomial]] on a Courant Lie 2-algebroid transgresses to a cocycle in [[∞-Lie algebroid cohomology]] and this transgression is witnessed by a [[Chern-Simons element]]. The [[schreiber:∞-Chern-Simons theory]] induced by this element is the [[Courant sigma-model]]. \hypertarget{lagrangian_submanifolds_and_dirac_structures}{}\subsubsection*{{Lagrangian submanifolds and Dirac structures}}\label{lagrangian_submanifolds_and_dirac_structures} The [[Lagrangian dg-submanifolds]] of a Courant Lie 2-algebroid corespond to its [[Dirac structures]]. \hypertarget{RelationToAtiyahGroupoids}{}\subsubsection*{{Relation to Atiyah Lie 2-algebroid and quantomorphism 2-group}}\label{RelationToAtiyahGroupoids} We discuss how the following tower of notions works \begin{tabular}{l|l} [[circle n-bundle]] with $(n-1)$-form connection&[[Lie n-algebra]] of [[group of bisections\\ \hline [[circle bundle]]&[[Lie algebra]] of [[sections]] of [[Atiyah Lie algebroid]]\\ [[circle 2-bundle]] with 1-form connection&[[Lie 2-algebra]] of [[sections]] of [[Courant Lie 2-algebroid]]\\ \end{tabular} For $n,k \in \mathbb{N}$ and $k \leq n$ write \begin{displaymath} \mathbf{B}^n U(1)_{conn^k} \coloneqq DK\left[ U(1) \stackrel{d log}{\to} \Omega^1 \stackrel{d}{\to} \cdots \stackrel{d}{\to} \Omega^{k-1} \stackrel{d}{\to} \Omega^k \to \underbrace{ 0 \to 0 \to \cdots \to 0 }_{n-k} \right] \end{displaymath} for the [[smooth ∞-groupoid]] which is presented under the [[Dold-Kan correspondence]] by the [[sheaf]] of [[chain complexes]], as indicated (see also at \emph{\href{differential+cohomology+diagram#DeligneCoefficients}{differential cohomology diagram -- Examples -- Deligne coefficients}}). This is such that for $k = n$ we have the [[Deligne complex]], representing the [[moduli ∞-stack]] of [[circle n-bundles with connection]] \begin{displaymath} \mathbf{B}^n U(1)_{conn^n} \simeq \mathbf{B}^n U(1)_{conn} \end{displaymath} and for $k = 0$ we have the moduli $\infty$-stack for plain [[circle n-group]] [[principal ∞-bundles]] \begin{displaymath} \mathbf{B}^n U(1)_{conn^0} \simeq \mathbf{B}^n U(1) \,. \end{displaymath} For $k_2 \lt k_1$ there are evident truncation maps \begin{displaymath} \mathbf{B}^n U(1)_{conn^{k_1}} \to \mathbf{B}^n U(1)_{conn^{k_2}} \,. \end{displaymath} Now for $X \in$ [[SmthMfd]] $\hookrightarrow$ [[Smooth∞Grpd]] a [[smooth manifold]], a map \begin{displaymath} \nabla \;\colon\; X \to \mathbf{B}^n U(1)_{conn} \end{displaymath} modulates a [[circle n-bundle with connection]] ([[bundle gerbe|bundle (n-1)-gerbe]]), which we may think of as a \emph{[[prequantum circle n-bundle]]}. Regarding this as an [[object]] in the [[slice (∞,1)-topos]] $\mathbf{H}_{/\mathbf{B}^n U(1)}$ this has an [[automorphism ∞-group]]. The [[concretification]] of this (\ldots{}) is the [[quantomorphism n-group]] $QuantMorph(\nabla)$. \begin{displaymath} \mathbf{QuantMorph}(\nabla) \coloneqq conc\mathbf{Aut}(\nabla) = \left\{ \itexarray{ X && \underoverset{\simeq}{\phi}{\to} && X \\ & {}_{\mathllap{\nabla}}\searrow &\swArrow_{\simeq}& \swarrow_{\mathrlap{\nabla}} \\ && \mathbf{B}^n U(1)_{conn} } \right\} \,. \end{displaymath} But we can also first forget the $n$-form pieces of the prequantum $n$-bundle away and consider \begin{displaymath} \nabla_{n-1} \;\colon\; X \stackrel{\nabla}{\to} \mathbf{B}^n U(1)_{conn} \simeq \mathbf{B}^n U(1)_{conn^n} \to \mathbf{B}^n U(1)_{conn^{n-1}} \,. \end{displaymath} For $n = 2$ this is sometimes known in the literature as a ``bundle gerbe with connective structure but without curving''. The concretified [[automorphism ∞-group]] of that truncated connection is the [[n-group]] of [[group of bisections|of bisection]] of the [[Atiyah n-groupoid]] \begin{displaymath} conc \mathbf{Aut}(\nabla_{n-1}) \in Grp(Smooth \infty Grpd) \,. \end{displaymath} For $n = 1$ this is the [[group of bisections]] of the [[Atiyah Lie groupoid]] of the underlying [[circle principal bundle]] $\nabla_0 \colon X \to \mathbf{B} U(1)$. Hence its [[Lie differentiation]] is the [[Lie algebra]] of sections of the corresponding [[Atiyah Lie algebroid]]. For $n = 2$ the [[Lie differentiation]] of this [[Lie 2-group]] is the [[Lie 2-algebra]] of sections of the corresponding Courant Lie 2-algebroid. With a little bit of translation, this is what is shown in (\hyperlink{Collier}{Collier}). Finally notice that the forgetful map $\mathbf{B}^n U(1)_{conn} \to \mathbf{B}^n U(1)_{conn^{n-1}}$ induces an [[homomorphism]] of [[∞-groups]] \begin{displaymath} conc \mathbf{Aut}(\nabla) \to conc \mathbf{Aut}(\nabla_{n-1}) \end{displaymath} hence an embedding of the [[quantomorphism n-group]] into the $n$-[[group of bisections]] of the Atiyah n-groupoid. For $n = 2$ and after [[Lie differentiation]], this is an embedding of the [[Poisson Lie 2-algebra]] into the sections of the Courant Lie 2-algebroid. This embedding had been observed in (\hyperlink{Rogers}{Rogers}). \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} [[!include higher Atiyah groupoid - table]] \begin{itemize}% \item [[symplectic Lie n-algebroid]] \begin{itemize}% \item [[symplectic manifold]] \item [[Poisson Lie algebroid]] \item \textbf{Courant algebroid} \end{itemize} \item [[Dirac structure]] \item [[Courant sigma-model]] \end{itemize} [[!include infinity-CS theory for binary non-degenerate invariant polynomial - table]] \hypertarget{references}{}\subsection*{{References}}\label{references} The original references in order of appearance are \begin{itemize}% \item [[Pavol Ševera]], \emph{Letters to A. Weinstein} (\href{http://sophia.dtp.fmph.uniba.sk/~severa/letters/}{web}, \href{https://arxiv.org/abs/1707.00265}{arXiv:1707.00265}) \item [[Dmitry Roytenberg]], [[Alan Weinstein]], \emph{Courant algebroids and strongly homotopy Lie algebras}, Lett. Math. Physics \textbf{46}(1):81-93, 1998. \item [[Dmitry Roytenberg]], \emph{Courant algebroids, derived brackets and even symplectic supermanifolds} PhD thesis, University of California, Berkeley, 1999. (\href{http://arxiv.org/abs/math.DG/9910078}{math.DG/9910078}) \item [[Pavol Ševera]], \emph{Some title containing the words ``homotopy'' and ``symplectic'', e.g. this one}, In Travaux math\'e{}matiques. Fasc. XVI, chapter Trav. Math., XVI, pp. 121-137. Univ. Luxembourg, 2005. \item [[Dmitry Roytenberg]], \emph{On the structure of graded symplectic supermanifolds and Courant algebroids}, pp. 169--185. in Contemporary Mathematics \textbf{315}, \emph{Quantization, Poisson brackets and beyond} (Manchester, 2001), Theodore Voronov, editor, Amer. Math. Soc. 2002. (\href{http://arxiv.org/abs/math/0203110}{arXiv:math/0203110}) \end{itemize} \begin{itemize}% \item [[Dmitry Roytenberg]], \emph{Quasi-Lie bialgebroids and twisted Poisson manifolds} , Letters in Mathematical Physics, 61(2):123-137 (2002) (\href{http://arxiv.org/abs/math/0112152}{arXiv:math/0112152}) \end{itemize} Another useful summary of the theory of Courant algebroids is in \href{http://arxiv.org/PS_cache/math/pdf/0401/0401221v1.pdf#page=19}{section 3} of \begin{itemize}% \item [[Marco Gualtieri]], \emph{Generalized complex geometry} (\href{http://arxiv.org/abs/math/0401221}{arXiv:math/0401221}) \end{itemize} A discussion of Courant algebroids with an eye towards the relation of the [[standard Courant algebroid]] to [[bundle gerbes]] is \begin{itemize}% \item [[Paul Bressler]], Alexander Chervov, \emph{Courant algebroids} (\href{http://arxiv.org/abs/hep-th/0212195}{hep-th/0212195}) \end{itemize} The identification of the Lie 2-algebra of sctions of a Courant Lie 2-algebroid associated with a [[circle 2-bundle with connection]] as its Lie algebra of automorphisms after forgetting the ``curving'' is in \begin{itemize}% \item [[Braxton Collier]], \emph{Infinitesimal Symmetries of Dixmier-Douady Gerbes} (\href{http://arxiv.org/abs/1108.1525}{arXiv:1108.1525}) \end{itemize} The embedding of the [[Poisson Lie 2-algebra]] of a given [[2-plectic geometry]] into the [[Lie 2-algebra]] of sections of the Courant Lie 2-algebroid of the corresponding [[prequantum 2-bundle]] is observed in \begin{itemize}% \item [[Chris Rogers]], \emph{Courant algebroids from categorified symplectic geometry}, (\href{http://arxiv.org/abs/1001.0040}{arXiv:1001.0040}) \end{itemize} This is developed further in \begin{itemize}% \item [[Domenico Fiorenza]], [[Chris Rogers]], [[Urs Schreiber]], \emph{[[schreiber:L-∞ algebras of local observables from higher prequantum bundles]]} (\href{http://arxiv.org/abs/1304.6292}{arXiv:1304.6292}) \end{itemize} See also \begin{itemize}% \item Wikipedia, \emph{\href{http://en.wikipedia.org/wiki/Courant_algebroid}{Courant algebroid}} \end{itemize} The relation between the two different Lie-alebroid-like definition of Courant algebroids, one with skew, the other with non-skew brackets inspired on the level of [[L-infinity algebra|Lie 2-algebras]] the treatment \begin{itemize}% \item [[Dmitry Roytenberg]], \emph{On weak Lie 2-algebras} (\href{http://arxiv.org/abs/0712.3461}{arXiv/0712.3461}) \item [[Chris Rogers]], \emph{2-plectic geometry, Courant algebroids, and categorified prequantization}, (\href{http://arxiv.org/abs/1009.2975}{arxiv:1009.2975}) \end{itemize} A proposal for a higher analog of the [[standard Courant algebroid]] with the [[generalized tangent bundle]] $T X \oplus T^* X$ replaced by $T X \oplus \wedge^n T^* X$ -- for a notion of standard [[higher Courant Lie algebroid]] -- is discussed in \begin{itemize}% \item [[Marco Zambon]], \emph{$L_\infty$-algebras and higher analogues of Dirac structures and Courant algebroids}, J. Symplectic Geometry, (\href{http://arxiv.org/abs/1003.1004}{arXiv:1003.1004}) \end{itemize} The relation to [[schreiber:∞-Chern-Simons theory]] is discussed in \begin{itemize}% \item [[Domenico Fiorenza]], [[Chris Rogers]], [[Urs Schreiber]], \emph{[[schreiber:Higher Chern-Weil Derivation of AKSZ Sigma-Models]]} \end{itemize} Discussion of [[Riemannian geometry]] on Courant algebroids and relation to [[supergravity]] [[equations of motion]] is in \begin{itemize}% \item [[Branislav Jurco]], [[Jan Vysoky]], \emph{Courant Algebroid Connections and String Effective Actions}, Proceedings of Tohoku Forum for Creativity, Special volume: Noncommutative Geometry and Physics IV (\href{https://arxiv.org/abs/1612.01540}{arXiv:1612.01540}) \end{itemize} See also \begin{itemize}% \item Xu Xiaomeng, \emph{Twisted Courant algebroids and coisotropic Cartan geometries} (\href{http://arxiv.org/abs/1206.2282}{arXiv:1206.2282}) \item [[Jan Vysoky]], \emph{Hitchhiker's Guide to Courant Algebroid Relations} (\href{https://arxiv.org/abs/1910.05347}{arXiv:1910.05347}) \end{itemize} [[!redirects Courant Lie algebroid]] [[!redirects Courant Lie algebroids]] [[!redirects Courant algebroids]] [[!redirects Courant Lie 2-algebroid]] [[!redirects Courant Lie 2-algebroids]] [[!redirects Courant bracket]] [[!redirects Courant brackets]] \end{document}