\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{D=11 N=1 supergravity} [[!redirects 11-dimensional supergravity]] [[!redirects 11-dimensional supergravity]] \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{gravity}{}\paragraph*{{Gravity}}\label{gravity} [[!include gravity contents]] \hypertarget{string_theory}{}\paragraph*{{String theory}}\label{string_theory} [[!include string theory - contents]] \hypertarget{physics}{}\paragraph*{{Physics}}\label{physics} [[!include physicscontents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{the_action_functional}{The action functional}\dotfill \pageref*{the_action_functional} \linebreak \noindent\hyperlink{kinetic_terms}{Kinetic terms}\dotfill \pageref*{kinetic_terms} \linebreak \noindent\hyperlink{the_higher_chernsimons_term}{The higher Chern-Simons term}\dotfill \pageref*{the_higher_chernsimons_term} \linebreak \noindent\hyperlink{HigherCurvatureCorrection}{Higher curvature corrections}\dotfill \pageref*{HigherCurvatureCorrection} \linebreak \noindent\hyperlink{the_hidden_deformation}{The hidden deformation}\dotfill \pageref*{the_hidden_deformation} \linebreak \noindent\hyperlink{bps_states}{BPS states}\dotfill \pageref*{bps_states} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \noindent\hyperlink{general}{General}\dotfill \pageref*{general} \linebreak \noindent\hyperlink{classical_solutions_and_bps_states}{Classical solutions and BPS states}\dotfill \pageref*{classical_solutions_and_bps_states} \linebreak \noindent\hyperlink{ReferencesHigherCurvatureCorrections}{Higher curvature corrections}\dotfill \pageref*{ReferencesHigherCurvatureCorrections} \linebreak \noindent\hyperlink{scattering_amplitudes_and_effective_action}{Scattering amplitudes and Effective action}\dotfill \pageref*{scattering_amplitudes_and_effective_action} \linebreak \noindent\hyperlink{truncations_and_compactifications}{Truncations and compactifications}\dotfill \pageref*{truncations_and_compactifications} \linebreak \noindent\hyperlink{topology_and_anomaly_cancellation}{Topology and anomaly cancellation}\dotfill \pageref*{topology_and_anomaly_cancellation} \linebreak \noindent\hyperlink{description_by_exceptional_generalized_geometry}{Description by exceptional generalized geometry}\dotfill \pageref*{description_by_exceptional_generalized_geometry} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} $N=1$ [[supergravity]] in $d = 11$. \begin{quote}% for the moment see the respective section at [[D'Auria-Fre formulation of supergravity]] \end{quote} \hypertarget{the_action_functional}{}\subsection*{{The action functional}}\label{the_action_functional} (\ldots{}) \hypertarget{kinetic_terms}{}\subsubsection*{{Kinetic terms}}\label{kinetic_terms} (\ldots{}) \hypertarget{the_higher_chernsimons_term}{}\subsubsection*{{The higher Chern-Simons term}}\label{the_higher_chernsimons_term} \begin{quote}% under construction \end{quote} \begin{displaymath} \int_X \left( \frac{1}{6} \left( C \wedge G \wedge G - C \wedge \frac{1}{8} \left( p_2 + (\frac{1}{2}p_1)^2 \right) \right) \right) \end{displaymath} where $p_i$ is the $i$th [[Pontryagin class]]. \begin{displaymath} \lambda := \frac{1}{2}p_1 \,. \end{displaymath} Concerning the integrality of \begin{displaymath} I_8 := \frac{1}{48}(p_2 + (\lambda)^2) \end{displaymath} on a [[spin structure|spin manifold]] $X$. (\hyperlink{Witten96}{Witten96, p.9}) First, the [[index]] of a [[Dirac operator]] on $X$ is \begin{displaymath} I = \frac{1}{1440}(7 (\frac{1}{2}p_1)^2 - p_2) \in \mathbb{Z} \,. \end{displaymath} Notice that $1440 = 6 \times 8 \times 30$. So \begin{displaymath} p_2 - (\frac{1}{2}p_2)^2 = 6 ( (\frac{1}{2}p_1)^2 - 30 \times 8 I) \end{displaymath} is divisible by 6. Assume that $(\frac{1}{2}p_1)$ is further divisible by 2 (see the relevant discussion at \emph{[[M5-brane]]}). \begin{displaymath} (\frac{1}{2}p_1) = 2 x \,. \end{displaymath} Then the above becomes \begin{displaymath} p_2 - (\frac{1}{2}p_2)^2 = 24 ( x^2 - 30 \times 2 I) \end{displaymath} and hence then $p_2 + (\frac{1}{2}p_1)^2$ is divisible at least by 24. But moreover, on a [[spin structure|Spin manifold]] the [[first fractional Pontryagin class]] $\frac{1}{2}p_1$ is the [[Wu class]] $\nu_4$ (see there). By definition this means that \begin{displaymath} x^2 = x (\frac{1}{2}p_1) \; mod \; 2 \end{displaymath} and so when $(\frac{1}{2}p_1)^2$ is further divisible by 2 we have that $p_2 - (\frac{1}{2}p_1)^2$ is divisible by 48. Hence $I_8$ is integral. \hypertarget{HigherCurvatureCorrection}{}\subsubsection*{{Higher curvature corrections}}\label{HigherCurvatureCorrection} Possible [[higher curvature corrections]] to 11-dimensional supergravity are discussed in the references listed \hyperlink{ReferencesHigherCurvatureCorrections}{below}. The first correction is an $R^4$-term at order $\ell^3_{P}$ (11d [[Planck length]]). In \hyperlink{Tsimpis04}{Tsimpis 04} it is shown that part of this is a topological term (total derivative) which related to the [[flux quantization]]-condition of the [[supergravity C-field]]. For effects of higher curvature corrections in a [[Starobinsky model of cosmic inflation]] see \href{Starobinsky+model+of+cosmic+inflation#EmbeddingIntoSupergravity}{there}. \hypertarget{the_hidden_deformation}{}\subsubsection*{{The hidden deformation}}\label{the_hidden_deformation} There is in fact a hidden 1-parameter deformation of the Lagrangian of 11d sugra. Mathematically this was maybe first noticed in (\hyperlink{DAuriaFre}{D'Auria-Fre 82}) around equation (4.25). This shows that there is a topological term which may be expressed as \begin{displaymath} \propto \int_{X_11} G_4 \wedge G_7 \end{displaymath} where $G_4$ is the [[curvature]] 3-form of the [[supergravity C-field]] and $G_7$ that of the [[electric-magnetic duality|magnetically dual]] [[C6-field]]. However, (\hyperlink{DAuriaFre}{D'Auria-Fre 82}) consider only topologically trivial (trivial [[instanton sector]]) configurations of the [[supergravity C-field]], and since on them this term is a total derivative, the authors ``drop'' it. The term then re-appears in the literatur in (\hyperlink{BandosBerkovitsSorokin97}{Bandos-Berkovits-Sorokin 97, equation (4.13)}). And it seems that this is the same term later also redicovered around equation (4.2) in (\hyperlink{Tsimpis04}{Tsimpis 04}). \begin{quote}% (hm, check) \end{quote} \hypertarget{bps_states}{}\subsubsection*{{BPS states}}\label{bps_states} The basic [[BPS states]] of 11d SuGra are \begin{itemize}% \item the [[M2-brane]] \item the [[M5-brane]] \item the [[M-wave]] \item the [[Kaluza-Klein monopole]] \end{itemize} (e.g. \hyperlink{EHKNT07}{EHKNT 07}) \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[supergravity]] \item [[12-dimensional supergravity]] \item 10-dimensional [[type II supergravity]], [[heterotic supergravity]] \item [[7-dimensional supergravity]] \item [[5-dimensional supergravity]] \item [[4-dimensional supergravity]] \begin{itemize}% \item [[M-theory on G2-manifolds]], [[G2-MSSM]] \item [[Freund-Rubin compactification]] \end{itemize} \item [[3-dimensional supergravity]] \item [[supergravity C-field]], [[supergravity Lie 3-algebra]], [[supergravity Lie 6-algebra]] \item [[Horava-Witten theory]] \item [[M-theory]] \item \href{string+theory+FAQ#DoesSTPredictSupersymmetry}{string theory FAQ -- Does string theory predict supersymmetry?} \end{itemize} [[!include table of branes]] \hypertarget{references}{}\subsection*{{References}}\label{references} \hypertarget{general}{}\subsubsection*{{General}}\label{general} That there is a maximal dimension $d = 11$ in which supergravity may exist was found in \begin{itemize}% \item [[Werner Nahm]], \emph{[[Supersymmetries and their Representations]]}, Nucl.Phys. B135 (1978) 149 (\href{https://inspirehep.net/record/120988/}{spire}, \href{http://cds.cern.ch/record/132743/files/197709213.pdf}{pdf}) \end{itemize} The theory was then actually constructed in \begin{itemize}% \item [[Eugene Cremmer]], [[Bernard Julia]], [[Joël Scherk]], \emph{Supergravity in theory in 11 dimensions}, Phys. Lett. 76B (1978) 409 () \end{itemize} Formulation in terms of [[supergeometry]] (``superspace formulation'') is in \begin{itemize}% \item [[Eugene Cremmer]], S. Ferrara, \emph{Formulation of Eleven-Dimensional Supergravity in Superspace}, Phys.Lett. B91 (1980) 61 \item [[Lars Brink]], [[Paul Howe]], \emph{Eleven-Dimensional Supergravity on the Mass-Shell in Superspace}, Phys.Lett. B91 (1980) 384 \end{itemize} The history as of 1990s with an eye towards the development to [[M-theory]] is survey in \begin{itemize}% \item [[Mike Duff]], chapter I of \emph{[[The World in Eleven Dimensions]]: Supergravity, Supermembranes and M-theory}, IoP 1999 (\href{https://www.crcpress.com/The-World-in-Eleven-Dimensions-Supergravity-supermembranes-and-M-theory/Duff/9780750306720}{publisher}) \end{itemize} The description of 11d supergravity in terms of the [[D'Auria-Fre formulation of supergravity]] originates in \begin{itemize}% \item [[Riccardo D'Auria]], [[Pietro Fré]], \emph{[[GeometricSupergravity.pdf:file]]}, Nuclear Physics B201 (1982) 101-140 \end{itemize} of which a textbook account is in \begin{itemize}% \item [[Leonardo Castellani]], [[Riccardo D'Auria]], [[Pietro Fré]], chapters III.8 and V.4-V.11 in \emph{[[Supergravity and Superstrings - A Geometric Perspective]]}, World Scientific, 1991 \end{itemize} The topological deformation (almost) noticed in equation (4.25) of \hyperlink{DAuriaFre82}{D'Auria-Fre 82} later reappears in (4.13) of \begin{itemize}% \item [[Igor Bandos]], [[Nathan Berkovits]], [[Dmitri Sorokin]], \emph{Duality-Symmetric Eleven-Dimensional Supergravity and its Coupling to M-Branes}, Nucl. Phys. B522 (1998) 214-233 (\href{http://arxiv.org/abs/hep-th/9711055}{arXiv:hep-th/9711055}) \end{itemize} and around (4.2) of \hyperlink{Tsimpis04}{Tsimpis 04} More recent textbook accounts include \begin{itemize}% \item [[Antoine Van Proeyen]], [[Daniel Freedman]], section 10 of \emph{Supergravity}, Cambridge University Press, 2012 \end{itemize} Discussion of the equivalence of the 11d SuGra [[equations of motion]] with the [[supergravity torsion constraints]] is in \begin{itemize}% \item [[Paul Howe]], \emph{Weyl Superspace}, Physics Letters B Volume 415, Issue 2, 11 December 1997, Pages 149--155 (\href{http://arxiv.org/abs/hep-th/9707184}{arXiv:hep-th/9707184}) \end{itemize} following \begin{itemize}% \item A. Candiello, K. Lechner, \emph{Duality in Supergravity Theories}, Nucl.Phys. B412 (1994) 479-501 (\href{http://arxiv.org/abs/hep-th/9309143}{arXiv:hep-th/9309143}) \end{itemize} Much computational detail is displayed in \begin{itemize}% \item Andre Miemiec, Igor Schnakenburg, \emph{Basics of M-Theory}, Fortsch.Phys. 54 (2006) 5-72 (\href{http://arxiv.org/abs/hep-th/0509137}{arXiv:hep-th/0509137}) \end{itemize} \hypertarget{classical_solutions_and_bps_states}{}\subsubsection*{{Classical solutions and BPS states}}\label{classical_solutions_and_bps_states} Bosonic solutions of eleven-dimensional supergravity were studied in the 1980s in the context of [[Kaluza-Klein mechanism|Kaluza-Klein]] supergravity. The topic received renewed attention in the mid-to-late 1990s as a result of the [[branes]] and duality paradigm and the [[AdS/CFT correspondence]]. One of the earliest solutions of eleven-dimensional supergravity is the maximally supersymmetric Freund-Rubin background with geometry $AdS_4 \times S^7$ and 4-form [[flux]] proportional to the [[volume form]] on $AdS_4$. \begin{itemize}% \item Peter Freund, Mark Rubin, \emph{Dynamics of Dimensional Reduction} Phys.Lett. B97 (1980) 233-235 (\href{http://inspirehep.net/record/154579?ln=en}{inSpire}) \end{itemize} The radii of curvatures of the two factors are furthermore in a ratio of 1:2. The modern avatar of this solution is as the near-horizon limit of coincident [[M2-branes]]. \begin{itemize}% \item [[Mike Duff]], [[Kellogg Stelle]], \emph{Multimembrane solutions of D = 11 supergravity} , Phys.Lett. B253 (1991) 113-118 (\href{http://adsabs.harvard.edu/abs/1991PhLB..253..113D}{web}) \end{itemize} Shortly after the original Freund-Rubin solution was discovered, Englert discovered a deformation of this solution where one could turn on [[flux]] on the $S^7$; namely, singling out one of the [[Killing spinors]] of the solution, a suitable multiple of the 4-form one constructs by squaring the [[spinor]] can be added to the [[volume form]] in $AdS_4$ and the resulting 4-form still obeys the supergravity [[Euler-Lagrange equations|field equations]], albeit with a different relation between the radii of [[curvature]] of the two factors. The flux breaks the [[special orthogonal group|SO(8)]] symmetry of the [[sphere]] to an $SO(7)$ subgroup. \begin{itemize}% \item [[Francois Englert]], \emph{Spontaneous Compactification of Eleven-Dimensional Supergravity} Phys.Lett. B119 (1982) 339 (\href{http://inspirehep.net/record/180130}{inSPIRE}) \end{itemize} Some of the above is taken from \href{http://theoreticalphysics.stackexchange.com/questions/329/modern-avatar-of-englerts-solution}{this TP.SE thread}. A classification of symmetric solutions is discussed in \begin{itemize}% \item [[José Figueroa-O'Farrill]], \emph{Symmetric M-Theory Backgrounds} (\href{http://arxiv.org/abs/1112.4967}{arXiv:1112.4967}) \item Linus Wulff, \emph{All symmetric space solutions of eleven-dimensional supergravity} (\href{https://arxiv.org/abs/1611.06139}{arXiv:1611.06139}) \end{itemize} Discussion of [[black branes]] and [[BPS states]] includes \begin{itemize}% \item [[Kellogg Stelle]], section 3 of \emph{BPS Branes in Supergravity} (\href{http://arxiv.org/abs/hep-th/9803116}{arXiv:hep-th/9803116}) \item [[Francois Englert]], Laurent Houart, [[Axel Kleinschmidt]], [[Hermann Nicolai]], Nassiba Tabti, \emph{An $E_9$ multiplet of BPS states}, JHEP 0705:065,2007 (\href{http://arxiv.org/abs/hep-th/0703285}{arXiv:hep-th/0703285}) \item Andrew Callister, [[Douglas Smith]], \emph{Topological BPS charges in 10 and 11-dimensional supergravity}, Phys. Rev. D78:065042,2008 (\href{http://arxiv.org/abs/0712.3235}{arXiv:0712.3235}) \item Andrew Callister, [[Douglas Smith]], \emph{Topological charges in $SL(2,\mathbb{R})$ covariant massive 11-dimensional and Type IIB SUGRA}, Phys.Rev.D80:125035,2009 (\href{http://arxiv.org/abs/0907.3614}{arXiv:0907.3614}) \item Andrew Callister, \emph{Topological BPS charges in 10- and 11-dimensional supergravity}, thesis 2010 (\href{http://inspirehep.net/record/1221591?ln=en}{spire}) \item A. A. Golubtsova, V.D. Ivashchuk, \emph{BPS branes in 10 and 11 dimensional supergravity}, talk at DIAS 2013 (\href{http://theor.jinr.ru/~diastp/summer13/lectures/Golubtsova.pdf}{pdf slides}) \item Cristine N. Ferreira, \emph{BPS solution for eleven-dimensional supergravity with a conical defect configuration} (\href{http://arxiv.org/abs/1312.0578}{arXiv:1312.0578}) \end{itemize} Discussion of [[black hole]] horizons includes \begin{itemize}% \item [[Jan Gutowski]], [[George Papadopoulos]], \emph{Static M-horizons} (\href{http://arxiv.org/abs/1106.3085}{arXiv:1106.3085}) \end{itemize} See also \begin{itemize}% \item Teng Fei, Bin Guo, Duong H. Phong, \emph{A Geometric Construction of Solutions to 11D Supergravity} (\href{https://arxiv.org/abs/1805.07506}{arXiv:1805.07506}) \end{itemize} \hypertarget{ReferencesHigherCurvatureCorrections}{}\subsubsection*{{Higher curvature corrections}}\label{ReferencesHigherCurvatureCorrections} Discussion of [[higher curvature corrections]]: \begin{itemize}% \item [[Arkady Tseytlin]], \emph{$R^4$ terms in 11 dimensions and conformal anomaly of (2,0) theory}, Nucl.Phys.B584:233-250, 2000 (\href{https://xxx.lanl.gov/abs/hep-th/0005072}{arXiv:hep-th/0005072}) \item Dimitrios Tsimpis, \emph{11D supergravity at $\mathcal{O}(l^3)$}, JHEP0410:046,2004 (\href{http://arxiv.org/abs/hep-th/0407271}{arXiv:hep-th/0407271}) \item [[Paul Howe]], \emph{$R^4$ terms in supergravity and M-theory} (\href{https://arxiv.org/abs/hep-th/0408177}{arXiv:hep-th/0408177}) \item [[Martin Cederwall]], [[Ulf Gran]], [[Bengt Nilsson]], [[Dimitrios Tsimpis]], \emph{Supersymmetric Corrections to Eleven-Dimensional Supergravity}, JHEP0505:052, 2005 (\href{https://arxiv.org/abs/hep-th/0409107}{arXiv:hep-th/0409107}) \item Anirban Basu, \emph{Constraining gravitational interactions in the M theory effective action}, Classical and Quantum Gravity, Volume 31, Number 16, 2014 (\href{https://arxiv.org/abs/1308.2564}{arXiv:1308.2564}) \item Bertrand Souères, Dimitrios Tsimpis, \emph{The action principle and the supersymmetrisation of Chern-Simons terms in eleven-dimensional supergravity}, Phys. Rev. D 95, 026013 (2017) (\href{https://arxiv.org/abs/1612.02021}{arXiv:1612.02021}) \end{itemize} and from the [[ABJM model]]: \begin{itemize}% \item Damon J. Binder, Shai M. Chester, Silviu S. Pufu, \emph{Absence of $D^4 R^4$ in M-Theory From ABJM} (\href{https://arxiv.org/abs/1808.10554}{arXiv:1808.10554}) \end{itemize} Discussion in view of the [[Starobinsky model of cosmic inflation]] is in \begin{itemize}% \item [[Katrin Becker]], [[Melanie Becker]], \emph{Supersymmetry Breaking, M-Theory and Fluxes}, JHEP 0107:038,2001 (\href{https://arxiv.org/abs/hep-th/0107044}{arXiv:hep-th/0107044}) \item Kazuho Hiraga, Yoshifumi Hyakutake, \emph{Inflationary Cosmology via Quantum Corrections in M-theory} (\href{https://arxiv.org/abs/1809.04724}{arXiv:1809.04724}) \end{itemize} \hypertarget{scattering_amplitudes_and_effective_action}{}\subsubsection*{{Scattering amplitudes and Effective action}}\label{scattering_amplitudes_and_effective_action} Computation of [[Feynman amplitudes]]/[[scattering amplitudes]] and [[effective action]] in 11d supergravity: \begin{itemize}% \item [[Stanley Deser]], [[Domenico Seminara]], \emph{Counterterms/M-theory Corrections to D=11 Supergravity}, Phys.Rev.Lett.82:2435-2438, 1999 (\href{https://arxiv.org/abs/hep-th/9812136}{arXiv:hep-th/9812136}) \item [[Stanley Deser]], [[Domenico Seminara]], \emph{Tree Amplitudes and Two-loop Counterterms in D=11 Supergravity}, Phys.Rev.D62:084010, 2000 (\href{https://arxiv.org/abs/hep-th/0002241}{arXiv:hep-th/0002241}) \item L. Anguelova, P. A. Grassi, P. Vanhove, \emph{Covariant One-Loop Amplitudes in $D=11$}, Nucl. Phys. B702 (2004) 269-306 (\href{https://arxiv.org/abs/hep-th/0408171}{arXiv:hep-th/0408171}) \item [[Kasper Peeters]], [[Jan Plefka]], Steffen Stern, \emph{Higher-derivative gauge field terms in the M-theory action}, JHEP 0508 (2005) 095 (\href{https://arxiv.org/abs/hep-th/0507178}{arXiv:hep-th/0507178}) \item Hamid R. Bakhtiarizadeh, \emph{Gauge field corrections to eleven dimensional supergravity via dimensional reduction} (\href{https://arxiv.org/abs/1711.11313}{arXiv:1711.11313}) \end{itemize} \hypertarget{truncations_and_compactifications}{}\subsubsection*{{Truncations and compactifications}}\label{truncations_and_compactifications} \begin{itemize}% \item [[Hermann Nicolai]], Krzysztof Pilch, \emph{Consistent truncation of $d = 11$ supergravity on $AdS_4 \times S^7$} (\href{http://arxiv.org/abs/1112.6131}{arXiv:1112.6131}) \end{itemize} \hypertarget{topology_and_anomaly_cancellation}{}\subsubsection*{{Topology and anomaly cancellation}}\label{topology_and_anomaly_cancellation} Discussion of [[quantum anomaly]] cancellation and [[Green-Schwarz mechanism]] in 11D supergravity includes the following articles. (For more see at \emph{\href{M5-brane#AnomalyCancellation}{M5-brane -- anomaly cancellation}}). \begin{itemize}% \item [[Edward Witten]], \emph{On Flux Quantization In M-Theory And The Effective Action} (\href{http://arxiv.org/abs/hep-th/9609122}{arXiv:hep-th/9609122}) \item [[Edward Witten]], \emph{Five-Brane Effective Action In M-Theory}, J.Geom.Phys.22:103-133, 1997 (\href{https://arxiv.org/abs/hep-th/9610234}{arXiv:hep-th/9610234}) \item [[Dan Freed]], [[Jeff Harvey]], [[Ruben Minasian]], [[Greg Moore]], \emph{Gravitational Anomaly Cancellation for M-Theory Fivebranes}, Adv.Theor.Math.Phys.2:601-618, 1998 (\href{https://arxiv.org/abs/hep-th/9803205}{arXiv:hep-th/9803205}) \item [[Adel Bilal]], Steffen Metzger, \emph{Anomaly cancellation in M-theory: a critical review}, Nucl.Phys. B675 (2003) 416-446 (\href{https://arxiv.org/abs/hep-th/0307152}{arXiv:hep-th/0307152}) \item Samuel Monnier, \emph{Global gravitational anomaly cancellation for five-branes}, Advances in Theoretical and Mathematical Physics, Volume 19 (2015) 3 (\href{https://arxiv.org/abs/1310.2250}{arXiv:1310.2250}) \item Ibrahima Bah, Federico Bonetti, [[Ruben Minasian]], Emily Nardoni, \emph{Class $\mathcal{S}$ Anomalies from M-theory Inflow} (\href{https://arxiv.org/abs/1812.04016}{arXiv:1812.04016}) \item [[Daniel Freed]], \emph{Two nontrivial index theorems in odd dimensions} (\href{http://arxiv.org/abs/dg-ga/9601005}{arXiv:dg-ga/9601005}) \item [[Adel Bilal]], Steffen Metzger, \emph{Anomaly cancellation in M-theory: a critical review} (\href{http://arxiv.org/abs/hep-th/0307152}{arXiv:hep-th/0307152}) \end{itemize} \hypertarget{description_by_exceptional_generalized_geometry}{}\subsubsection*{{Description by exceptional generalized geometry}}\label{description_by_exceptional_generalized_geometry} \begin{itemize}% \item Paulo Pires Pacheco, [[Daniel Waldram]], \emph{M-theory, exceptional generalised geometry and superpotentials} (\href{http://arxiv.org/abs/0804.1362}{arXiv:0804.1362}) \end{itemize} [[!redirects 11d supergravity]] [[!redirects D=11 supergravity]] \end{document}