\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{D=3 supergravity} [[!redirects 3-dimensional supergravity]] \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{gravity}{}\paragraph*{{Gravity}}\label{gravity} [[!include gravity contents]] \hypertarget{physics}{}\paragraph*{{Physics}}\label{physics} [[!include physicscontents]] \hypertarget{supergeometry}{}\paragraph*{{Super-Geometry}}\label{supergeometry} [[!include supergeometry - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{PossibleGaugings}{Possible gaugings}\dotfill \pageref*{PossibleGaugings} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \noindent\hyperlink{generally}{Generally}\dotfill \pageref*{generally} \linebreak \noindent\hyperlink{branes}{Branes}\dotfill \pageref*{branes} \linebreak \noindent\hyperlink{gauged}{Gauged}\dotfill \pageref*{gauged} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} ([[gauged supergravity|gauged]]) [[supergravity]] in [[dimension]] 3. \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{PossibleGaugings}{}\subsubsection*{{Possible gaugings}}\label{PossibleGaugings} The ([[U-duality]]-)[[global gauge group]] of maximally [[supersymmetry|supersymmetric]] 3d supergravity is [[E8]] (its [[split real form]] $E_{8(8)}$). Various [[subgroups]] of this may be promoted to [[local gauge groups]] (with [[gauge fields]] in [[gauged supergravity]]), which may be obtained via ([[flux compactification|fluxed]]) [[KK-compactification]] of [[11-dimensional supergravity]]. However, 3d supergravity also admits a maximal gauging where all of $E_{8(8)}$ is promoted to a local gauge group (\hyperlink{NicolaiSamtleben00}{Nicolai-Samtleben 00}, \hyperlink{NicolaiSamtleben01}{Nicolai-Samtleben 01, table 1})). This maximal gauging in 3d supergravity is not obtained by reduction from standard [[11-dimensional supergravity]], see the remarks in (\hyperlink{NicolaiSamtleben01}{Nicolai-Samtleben 01, section 7}) and see the followup (\hyperlink{HohmSamtleben13}{Hohm-Samtleben 13}). In (\hyperlink{deWitNicolai13}{de Wit-Nicolai 13, section 13}) it is suggested that the seemingly missing degrees of freedom necessary to accomplish for [[U-duality]]-gauge enhancement after reduction may be sitting in a [[non-perturbative effect|non-perturvative]] [[electric-magnetic duality|dual]] of the [[graviton]] ([[dual graviton]]). \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[11-dimensional supergravity]] \item 10-dimensional [[type II supergravity]], [[heterotic supergravity]] \item [[7-dimensional supergravity]] \item [[5-dimensional supergravity]] \item [[4-dimensional supergravity]] \item \textbf{3-dimensional supergravity} \begin{itemize}% \item [[M-theory on 8-manifolds]] \item [[3d quantum gravity]] \end{itemize} \item [[ABJM model]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} \hypertarget{generally}{}\subsubsection*{{Generally}}\label{generally} Lecture notes include \begin{itemize}% \item F. Ruiz Ruiz, [[Peter van Nieuwenhuizen]], \emph{Lectures on Supersymmetry and Supergravity in $2+1$ Dimensions and regularization of supersymmetric gauge theories} (\href{http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.17.3667&rep=rep1&type=pdf}{pdf}) \end{itemize} A complete list of un-gauged supergravities in 3 dimensions was given in \begin{itemize}% \item [[Bernard de Wit]], A.K. Tollsten, [[Hermann Nicolai]], \emph{Locally supersymmetric D=3 non-linear sigma models}, Nucl. Phys. B392 (1993) 3 (\href{http://xxx.lanl.gov/abs/hep-th/9208074}{arXiv:hep-th/9208074}) \end{itemize} See also \begin{itemize}% \item Gabriele Tartaglino-Mazzucchelli, \emph{Topics in $3D$ $N=2$ AdS supergravity in superspace}, (\href{http://arxiv.org/abs/1202.0109}{arXiv:1202.0109}) \item Martin Pol\'a{}ek, [[Warren Siegel]], \emph{T-duality off shell in 3D Type II superspace} (\href{http://arxiv.org/abs/1403.6904}{arXiv:1403.6904}) \end{itemize} \hypertarget{branes}{}\subsubsection*{{Branes}}\label{branes} Discussion of [[D-branes]] in 3d supergravity includes \begin{itemize}% \item Bj\"o{}rn Brinne, Svend E. Hjelmeland, [[Ulf Lindström]], \emph{World-Volume Locally Supersymmetric Born-Infeld Actions}, Phys.Lett. B459 (1999) 507-514 (\href{http://arxiv.org/abs/hep-th/9904175}{arXiv:hep-th/9904175}) \item Bj\"o{}rn Brinne, \emph{3D supergravity and a spinning D2-brane} \end{itemize} \hypertarget{gauged}{}\subsubsection*{{Gauged}}\label{gauged} Topological gauged supergravity in dimension three was first considered in \begin{itemize}% \item A. Ach\'u{}carro and [[Paul Townsend]], \emph{A Chern-Simons action for three-dimensional anti-de Sitter supergravity theories}, Phys. Lett. B180 (1986) 89 \end{itemize} Gauged supergravity via [[KK-compactification]] of [[11-dimensional supergravity]] on an 8-torus and with global [[E8]] [[U-duality]] and local $SO(16)$ [[gauge field]] was discussed in \begin{itemize}% \item [[Bernard Julia]], \emph{Application of supergravity to gravitation theories}, in \emph{Unified field theories in more than 4 dimensions} (V. D. Sabbata and E. Schmutzer, eds.), (Singapore), pp. 215--236, World Scientific, 1983. \item N. Marcus, [[John Schwarz]], \emph{Three-dimensional supergravity theories}, Nucl. Phys. B228 (1983) 145. \end{itemize} The maximally supersymmetric gauged 3d supergravitites (and their \hyperlink{PossibleGaugings}{exceptional gaugings}) are listed in \begin{itemize}% \item [[Hermann Nicolai]], [[Henning Samtleben]], \emph{Maximal gauged supergravity in three dimensions}, Phys.Rev.Lett. 86 (2001) 1686-1689 (\href{http://xxx.lanl.gov/abs/hep-th/0010076}{arXiv:hep-th/0010076}) \end{itemize} with details in \begin{itemize}% \item [[Hermann Nicolai]], [[Henning Samtleben]], \emph{Compact and Noncompact Gauged Maximal Supergravities in Three Dimensions} (\href{http://arxiv.org/abs/hep-th/0103032}{arXiv:hep-th/0103032}) \item [[Olaf Hohm]], [[Henning Samtleben]], \emph{Exceptional Form of $D=11$ Supergravity}, Phys. Rev. Lett. 111, 231601 (2013) (\href{http://arxiv.org/abs/1308.1673}{arXiv:1308.1673}) \item [[Bernard de Wit]], [[Hermann Nicolai]], \emph{Deformations of gauged SO(8) supergravity and supergravity in eleven dimensions} (\href{http://arxiv.org/abs/1302.6219}{arXiv:1302.6219}) \end{itemize} (see also at \emph{[[exceptional generalized geometry]]}). See also \begin{itemize}% \item Hitoshi Nishino, Subhash Rajpoot, \emph{Topologican Gauging of N=16 Supergravity in Three-Dimensions}, Phys.Rev. D67 (2003) 025009 (\href{http://arxiv.org/abs/hep-th/0209106}{arXiv:hep-th/0209106}) \item Eoin \'O{} Colg\'a{}in, [[Henning Samtleben]], \emph{3D gauged supergravity from wrapped M5-branes with AdS/CMT applications}, JHEP 1102:031,2011 (\href{http://arxiv.org/abs/1012.2145}{arXiv:1012.2145}) \item Edi Gava, Parinya Karndumri, K. S. Narain, \emph{3D gauged supergravity from SU(2) reduction of N=1 6D supergravity}, JHEP 09 (2010) 028 (\href{http://arxiv.org/abs/1006.4997}{arXiv:1006.4997}) \end{itemize} [[!redirects 3-dimensional supergravities]] [[!redirects 3d supergravity]] [[!redirects 3d supergravities]] \end{document}