\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{D=5 supergravity} [[!redirects 5-dimensional supergravity]] [[!redirects 5-dimensional supergravity]] \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{gravity}{}\paragraph*{{Gravity}}\label{gravity} [[!include gravity contents]] \hypertarget{string_theory}{}\paragraph*{{String theory}}\label{string_theory} [[!include string theory - contents]] \hypertarget{physics}{}\paragraph*{{Physics}}\label{physics} [[!include physicscontents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{5dChernSimonsTerm}{5d Chern-Simons term}\dotfill \pageref*{5dChernSimonsTerm} \linebreak \noindent\hyperlink{black_holes_and_black_rings}{Black holes and black rings}\dotfill \pageref*{black_holes_and_black_rings} \linebreak \noindent\hyperlink{ViaCYCompactificationOf11dSupergravity}{Via Calabi-Yau compactification of 11d supergravity}\dotfill \pageref*{ViaCYCompactificationOf11dSupergravity} \linebreak \noindent\hyperlink{uduality}{U-duality}\dotfill \pageref*{uduality} \linebreak \noindent\hyperlink{_supersymmetry}{$N = 2$ supersymmetry}\dotfill \pageref*{_supersymmetry} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \noindent\hyperlink{general}{General}\dotfill \pageref*{general} \linebreak \noindent\hyperlink{via_mtheory_on_calabiyau_3folds}{Via M-theory on Calabi-Yau 3-folds}\dotfill \pageref*{via_mtheory_on_calabiyau_3folds} \linebreak \noindent\hyperlink{via_type_iib_theory}{Via type IIB theory}\dotfill \pageref*{via_type_iib_theory} \linebreak \noindent\hyperlink{ReferencesGauged}{Gauged sugra}\dotfill \pageref*{ReferencesGauged} \linebreak \noindent\hyperlink{ReferencesHWCompactification}{Horava-Witten compactification}\dotfill \pageref*{ReferencesHWCompactification} \linebreak \noindent\hyperlink{black_hole_solutions}{Black hole solutions}\dotfill \pageref*{black_hole_solutions} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} [[supergravity]] in [[dimension]] 5. For $N = 1$ this arises from [[11-dimensional supergravity]] by [[KK-compactification]] on a [[Calabi-Yau manifold]] of complex dimension 3 (see at \emph{[[M-theory on Calabi-Yau manifolds]]}), hence serves as the low-energy [[effective field theory]] of the strong-coupling version of Calabi-Yau compactifications of [[type IIA string theory]] (see [[supersymmetry and Calabi-Yau manifolds]]) \begin{displaymath} \itexarray{ 11d \; SuGra\; on\; S^1 \times Y_6 \times X_4 &\longrightarrow& 5d \; SuGra\; on\; S^1 \times X_4 && strong \; coupling \\ \downarrow && \downarrow \\ 10d\; tpye \;IIA\; Sugra\; on \; Y_6 \times X_4 &\longrightarrow& 10d\; Sugra\; on \; X_4 && weak \; coupling } \end{displaymath} \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{5dChernSimonsTerm}{}\subsubsection*{{5d Chern-Simons term}}\label{5dChernSimonsTerm} This theory has a 2-form field strength $F_2$, locally $F_2 = d A$, with a [[5d Chern-Simons theory]] [[action functional]] locally of the form $\propto \int_X F_2 \wedge F_2 \wedge A$ (e.g. \hyperlink{CastellaniDAuriaFre}{Castellani-D'Auria-Fre (III.5.70)}, \hyperlink{GauntlettMyersTownsend98}{Gauntlet-Myers-Townsend 98, p. 3}, \hyperlink{GGHPR02}{GGHPR 02 (2.1)}, \hyperlink{BonettiGrimmHohenegger13}{Bonetti-Grimm-Hohenegger 13}). Hence its [[equation of motion]] is of the non-linear form \begin{displaymath} d F_3 = F_2 \wedge F_2 \end{displaymath} with $F_3 \coloneqq \star F_2$ the [[Hodge dual]] of $F_2$ (\hyperlink{GGHPR02}{GGHPR 02 (2.2)}). This is reflected in the corresponding cochains on [[super Minkowski spacetime]] \begin{displaymath} \mu_{D0,5d} = \overline{\psi}_A \psi_A \phantom{AAA} \mu_{string,5d} = \overline{\psi}_A\Gamma_a \psi_A \wedge e^a \end{displaymath} satisfying \begin{displaymath} d \mu_{string,5d} = \mu_{D0,5d} \wedge \mu_{D0,5d} \,. \end{displaymath} due to the [[Fierz identity]] in \hyperlink{CastellaniDAuriaFre}{Castellani-D'Auria-Fré 91 (III.5.50a)}, \href{Fierz+identity#QuadraticFierzIdentitiesIn5d}{this example}: $\backslash$begin\{imagefromfile\} ``file\_name'': ``FierzIdentitiesForBraneCocyclesIn5d.png'', ``width'': 600 $\backslash$end\{imagefromfile\} (the other Fierz identity (III.5.50a) gives the [[membrane]] cocycle $\mu_{membrane,5d} \coloneqq \frac{i}{2}\overline{\psi}_A \Gamma_{a b} \psi \wedge e^a \wedge e^b$, $d \mu_{membrane,5d} = 0$, that appears already in the old [[brane scan]]. ) This is a lower dimensional analogue to the situation for the [[C-field]] $G_4$ (locally $G_4 = d C$) in [[11-dimensional supergravity]], which has a Chern-Simons term locally of the form $\propto \int G_4 \wedge G_4 \wedge C$ and hence the equation of motion \begin{displaymath} d G_7 \;=\; -\tfrac{1}{2}G_4 \wedge G_4 \end{displaymath} with $G_7 = \star G_4$. \hypertarget{black_holes_and_black_rings}{}\subsubsection*{{Black holes and black rings}}\label{black_holes_and_black_rings} The first [[black ring]] solution in 5d sugra was found in (\hyperlink{ElvangEmparanMateosReall04}{Elvang-Emparan-Mateos-Reall 04}, \hyperlink{ElvangEmparanMateosReall05}{Elvang-Emparan-Mateos-Reall 05}). Supersymmetric black holes exist precisely only in dimensions 4 and 5 (\hyperlink{GauntlettMyersTownsend98}{Gauntlett-Myers-Townsend 98}). These play a key role in the discussion of [[black holes in string theory]]. (There are supersymmetric particle-like solutions of $d \gt 5$ supergravity theories that are sometimes called black holes, but these are always singular. There are also supersymmetric black holes in $d = 3$, but the spacetime in that case is asymptotically [[anti-de Sitter spacetime]] rather than asymptotically flat. Of course, there are non-singular supersymmetric [[black brane]] solutions in various $d \geq 4$ supergravity theories but these are neither `particle-like' nor, strictly speaking, asymptotically flat.) \hypertarget{ViaCYCompactificationOf11dSupergravity}{}\subsubsection*{{Via Calabi-Yau compactification of 11d supergravity}}\label{ViaCYCompactificationOf11dSupergravity} Discussion of 5d supegravity as a [[KK-compactification]] of [[11-dimensional supergravity]] on a [[Calabi-Yau manifold]] of complex dimension 3 ([[M-theory on Calabi-Yau manifolds]]) is discussed in (\hyperlink{HullTownsend95}{Hull-Townsend 95, p.30-31}, \hyperlink{CadavidCeresoleDAuriaFerrara95}{Cadavid-Ceresole-D'Auria-Ferrara 95} \hyperlink{FerraraKhuriaMinasian96}{Ferrara-Khuria-Minasian 96}, \hyperlink{FerraraMinasianSagnotti96}{Ferrara-Minasian-Sagnotti 96}). See also (\hyperlink{MizoguchiOhta98}{Mizoguchi-Ohta 98}). \hypertarget{uduality}{}\subsubsection*{{U-duality}}\label{uduality} [[!include U-duality -- table]] \hypertarget{_supersymmetry}{}\subsubsection*{{$N = 2$ supersymmetry}}\label{_supersymmetry} Consider super Lie algebra cocoycles on $N =2$ 5d [[super-Minkowski spacetime]] (as in the [[brane scan]]). With the notation as used at \emph{\href{super%20Minkowski%20spacetime#CanonicalCoordinates}{super Minkowski spacetime -- Canonical coordinates}}, there are now two copies of spinor-valued 1-forms, denoted $\psi_1$ and $\psi_2$. We use indices of the form $A,B, \cdots$ for these. Then the non-trivial bit of the [[Chevalley-Eilenberg algebra]] differential for $N = 2$, $d = 5$ [[super Minkowski spacetime]] is \begin{displaymath} d_{CE} e^a = - \tfrac{i}{2} \overline{\psi}_A \wedge \Gamma^a \psi_A \end{displaymath} where summation over repeated indices is understood. There is a [[Fierz identity]] \begin{displaymath} \overline{\psi}_A \wedge \psi_A \wedge \overline{\psi}_B \wedge \psi_B \;=\; \overline{\psi}_A \wedge \Gamma_a \psi_A \wedge \overline{\psi}_B \wedge \Gamma^a \psi_B \,. \end{displaymath} (\hyperlink{CastellaniDAuriaFre}{Castellani-D'Auria-Fr\'e{} (III.5.50a)}) This implies that \begin{displaymath} d_{CE} (\overline{\psi}_A \Gamma^a \psi_A \wedge e_a) \;\propto\; (\overline{\psi}_A \wedge \Gamma^a \psi_A) \wedge (\overline{\psi}_B \wedge \Gamma^a \psi_B) \,. \end{displaymath} There is a 4-cocycle of the form \begin{displaymath} \mu_2 = \epsilon^{A B} \overline{\psi}_A \wedge \Gamma^{a b} \psi_B \wedge e_a \wedge e_b \,. \end{displaymath} (\hyperlink{CastellaniDAuriaFre}{Castellani-D'Auria-Fr\'e{} (III.5.50b), (III.5.53c)}) \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[5-dimensional Chern-Simons theory]] \item [[11-dimensional supergravity]] \item 10-dimensional [[type II supergravity]], [[heterotic supergravity]] \item [[7-dimensional supergravity]] \item \textbf{5-dimensional supergravity} \item [[4-dimensional supergravity]] \item [[3-dimensional supergravity]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} Construction of 5d [[gauged supergravity]] via [[D'Auria-Fré formulation of supergravity]] is in \begin{itemize}% \item Laura Andrianopoli, Francesco Cordaro, [[Pietro Fré]], Leonardo Gualtieri, \emph{Non-Semisimple Gaugings of D=5 N=8 Supergravity and FDA.s}, Class.Quant.Grav. 18 (2001) 395-414 (\href{http://arxiv.org/abs/hep-th/0009048}{arXiv:hep-th/0009048}) \end{itemize} surveyed in \begin{itemize}% \item Laura Andrianopoli, Francesco Cordaro, [[Pietro Fré]], \emph{Non-Semisimple Gaugings of D=5 N=8 Supergravity}, Fortsch.Phys.49:511-518,2001 (\href{http://arxiv.org/abs/hep-th/0012203}{arXiv:hep-th/0012203}) \end{itemize} \hypertarget{general}{}\subsubsection*{{General}}\label{general} General discussion includes \begin{itemize}% \item [[Leonardo Castellani]], [[Riccardo D'Auria]], [[Pietro Fré]], chapter III.5 of \emph{[[Supergravity and Superstrings - A Geometric Perspective]]}, World Scientific (1991) (in [[D'Auria-Fre formulation of supergravity]]) \item W. D. Linch III, Markus A. Luty, J. Phillips, \emph{Five dimensional supergravity in $N = 1$ superspace}, Phys.Rev.D68:025008,2003 (\href{https://arxiv.org/abs/hep-th/0209060}{arXiv:hep-th/0209060}) \item [[Jerome Gauntlett]], [[Jan Gutowski]], [[Christopher Hull]], Stathis Pakis, [[Harvey Reall]], \emph{All supersymmetric solutions of minimal supergravity in five dimensions}, Class.Quant.Grav. 20 (2003) 4587-4634 (\href{http://arxiv.org/abs/hep-th/0209114}{arXiv:hep-th/0209114}) \item Sorin Cucu, \emph{From M-theory to D=5 supergravity and duality-symmetric theories} (\href{http://arxiv.org/abs/hep-th/0310105}{arXiv:hep-th/0310105}) \item [[Eric Bergshoeff]], Sorin Cucu, Tim de Wit, Jos Gheerardyn, Stefan Vandoren, [[Antoine Van Proeyen]], \emph{$N=2$ supergravity in five dimensions revisited} (\href{http://arxiv.org/abs/hep-th/0403045}{arXiv:hep-th/0403045}) \item [[Katrin Becker]], [[Melanie Becker]], Daniel Butter, William D. Linch III, Stephen Randall, \emph{Five-dimensional Supergravity in N = 1/2 Superspace} (\href{https://arxiv.org/abs/1909.09208}{arXiv:1909.09208}) \end{itemize} \hypertarget{via_mtheory_on_calabiyau_3folds}{}\subsubsection*{{Via M-theory on Calabi-Yau 3-folds}}\label{via_mtheory_on_calabiyau_3folds} Discussion via [[KK-compactification]] as [[M-theory on Calabi-Yau manifolds]] includes \begin{itemize}% \item [[Chris Hull]], [[Paul Townsend]], pages 30 and 31 of \emph{Unity of Superstring Dualities}, Nucl.Phys.B438:109-137,1995 (\href{https://arxiv.org/abs/hep-th/9410167}{arXiv:hep-th/9410167}) \item \{CadavidCeresoleDAuriaFerrara95\} A.C. Cadavid, A. Ceresole, [[Riccardo D'Auria]], [[Sergio Ferrara]], \emph{11-Dimensional Supergravity Compactified on Calabi-Yau Threefolds} (\href{https://arxiv.org/abs/hep-th/9506144}{arXiv:hep-th/9506144}) \item [[Sergio Ferrara]], Ramzi R. Khuria, [[Ruben Minasian]], \emph{M-theory on a Calabi-Yau manifold}, Phys.Lett.B375:81-88,1996 (\href{https://arxiv.org/abs/hep-th/9602102}{arXiv:hep-th/9602102}) \item [[Sergio Ferrara]], [[Ruben Minasian]], [[Augusto Sagnotti]], \emph{Low-Energy Analysis of M and F Theories on Calabi-Yau Threefolds}, Nucl.Phys. B474 (1996) 323-342 (\href{https://arxiv.org/abs/hep-th/9604097}{arXiv:hep-th/9604097}) \item S. Mizoguchi, N. Ohta, \emph{More on the Similarity between $D=5$ Simple Supergravity and M Theory}, Phys.Lett. B441 (1998) 123-132 (\href{https://arxiv.org/abs/hep-th/9807111}{arXiv:hep-th/9807111}) \end{itemize} Further discussion of the [[5d Chern-Simons theory|5d Chern-Simons term]] includes \begin{itemize}% \item Federico Bonetti, [[Thomas Grimm]], [[Stefan Hohenegger]], \emph{One-loop Chern-Simons terms in five dimensions} (\href{http://arxiv.org/abs/1302.2918}{arXiv:1302.2918}) \end{itemize} (one-loop corrections). \hypertarget{via_type_iib_theory}{}\subsubsection*{{Via type IIB theory}}\label{via_type_iib_theory} \begin{itemize}% \item Arnaud Baguet, [[Olaf Hohm]], [[Henning Samtleben]], \emph{Consistent Type IIB Reductions to Maximal 5D Supergravity} (\href{https://arxiv.org/abs/1506.01385}{arXiv:1506.01385}) \end{itemize} \hypertarget{ReferencesGauged}{}\subsubsection*{{Gauged sugra}}\label{ReferencesGauged} The maximal 5d [[gauged supergravity]] was first constructed in \begin{itemize}% \item M. Pernici, K. Pilch, [[Peter van Nieuwenhuizen]], \emph{Gauged $N=8$ $D=5$ Supergravity}, Nucl.Phys. B259 (1985) 460 (\href{https://inspirehep.net/record/16067?ln=en}{spire}) \item M. Gunaydin, L.J. Romans, N.P. Warner, \emph{Compact and Noncompact Gauged Supergravity Theories in Five-Dimensions}, Nucl.Phys. B272 (1986) 598-646 (\href{https://inspirehep.net/record/219727?ln=en}{spire}) \end{itemize} See (\hyperlink{ACFG01}{ACFG 01}). \begin{itemize}% \item Murat Gunaydin, Marco Zagermann, \emph{The Gauging of Five-dimensional, $N=2$ Maxwell-Einstein Supergravity Theories coupled to Tensor Multiplets}, Nucl.Phys.B572:131-150,2000 (\href{https://arxiv.org/abs/hep-th/9912027}{arXiv:hep-th/9912027}) \item Murat Gunaydin, Marco Zagermann, \emph{The Vacua of 5d, $N=2$ Gauged Yang-Mills/Einstein/Tensor Supergravity: Abelian Case}, Phys.Rev.D62:044028,2000 (\href{http://arxiv.org/abs/hep-th/0002228}{arXiv:hep-th/0002228}) \item A. Ceresole, [[Gianguido Dall'Agata]], \emph{General matter coupled $N=2$, $D=5$ gauged supergravity}, Nucl.Phys. B585 (2000) 143-170 (\href{http://arxiv.org/abs/hep-th/0004111}{arXiv:hep-th/0004111}) \item [[John Ellis]], Murat Gunaydin, Marco Zagermann, \emph{Options for Gauge Groups in Five-Dimensional Supergravity}, JHEP 0111:024,2001 (\href{http://arxiv.org/abs/hep-th/0108094}{arXiv:hep-th/0108094}) \end{itemize} \hypertarget{ReferencesHWCompactification}{}\subsubsection*{{Horava-Witten compactification}}\label{ReferencesHWCompactification} Discussion of [[KK-compactification]] on $S^1/(\mathbb{Z}/2)$-orbifolds (the version of [[Horava-Witten theory]] after dimensional reduction) is discussed in \begin{itemize}% \item Filipe Paccetti Correia, Michael G. Schmidt, Zurab Tavartkiladze, \emph{4D Superfield Reduction of 5D Orbifold SUGRA and Heterotic M-theory} (\href{https://arxiv.org/abs/hep-th/0602173}{arXiv:hep-th/0602173}) \end{itemize} \hypertarget{black_hole_solutions}{}\subsubsection*{{Black hole solutions}}\label{black_hole_solutions} Discussion of lifts of 4d black holes to 5d black holes and [[black rings]] and embedding as [[black holes in string theory]] includes \begin{itemize}% \item [[Jerome Gauntlett]], R.C. Myers, [[Paul Townsend]], \emph{Black Holes of D=5 Supergravity}, Class.Quant.Grav.16:1-21,1999 (\href{http://arxiv.org/abs/hep-th/9810204}{arXiv:hep-th/9810204}) \item Henriette Elvang, Roberto Emparan, David Mateos, [[Harvey Reall]], \emph{A supersymmetric black ring}, Phys.Rev.Lett.93:211302,2004 (\href{http://arxiv.org/abs/hep-th/0407065}{arXiv:hep-th/0407065}) \item Henriette Elvang, Roberto Emparan, David Mateos, [[Harvey Reall]], \emph{Supersymmetric 4D Rotating Black Holes from 5D Black Rings}, JHEP0508:042,2005 (\href{http://arxiv.org/abs/hep-th/0504125}{arXiv:hep-th/0504125}) \item I. Bena, [[Per Kraus]], \emph{Microscopic description of black rings in AdS/CFT} JHEP 12 (2004) 070 (\href{http://arxiv.org/abs/hep-th/0408186}{hep-th/0408186}) \item I. Bena and P. Kraus, \emph{Microstates of the D1-D5-KK system} Phys. Rev. D72 (2005) 025007 (\href{http://arxiv.org/abs/hep-th/0503053}{hep-th/0503053}) \item [[Davide Gaiotto]], [[Andrew Strominger]], and X. Yin, \emph{5D black rings and 4D black holes} JHEP 02 (2006) 023 (\href{http://arxiv.org/abs/hep-th/0504126}{hep-th/0504126}) \item [[Davide Gaiotto]], [[Andrew Strominger]], and X. Yin, \emph{New connections between 4D and 5D black holes}, JHEP 02 (2006) 024 (\href{https://arxiv.org/abs/hep-th/0503217}{hep-th/0503217}) \item Alejandra Castro, Joshua L. Davis, [[Per Kraus]], Finn Larsen, \emph{String Theory Effects on Five-Dimensional Black Hole Physics} (\href{http://arxiv.org/abs/0801.1863}{arXiv:0801.1863}) \item Minkyu Park, Masaki Shigemori, \emph{Codimension-2 Solutions in Five-Dimensional Supergravity}, JHEP 1510 (2015) 011 (\href{http://arxiv.org/abs/1505.05169}{arXiv:1505.05169}) \end{itemize} Review includes \begin{itemize}% \item [[Per Kraus]], \emph{Lectures on black holes and the $AdS_3$ / $CFT_2$ correspondence} (\href{http://arxiv.org/abs/hep-th/0609074}{arXiv:hep-th/0609074}) \emph{Stringy black holes in five dimensions}, 2007 (\href{http://hep.ps.uci.edu/~arajaram/Irvine.07.pdf}{pdf slides}) \end{itemize} [[!redirects 5d supergravity]] \end{document}