\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{D-module} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{topos_theory}{}\paragraph*{{Topos Theory}}\label{topos_theory} [[!include topos theory - contents]] \hypertarget{higher_algebra}{}\paragraph*{{Higher algebra}}\label{higher_algebra} [[!include higher algebra - contents]] \hypertarget{higher_geometry}{}\paragraph*{{Higher geometry}}\label{higher_geometry} [[!include higher geometry - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{in_terms_of_differential_operators}{In terms of differential operators}\dotfill \pageref*{in_terms_of_differential_operators} \linebreak \noindent\hyperlink{in_terms_of_sheaves_on_the_derham_space}{In terms of sheaves on the deRham space}\dotfill \pageref*{in_terms_of_sheaves_on_the_derham_space} \linebreak \noindent\hyperlink{meaning_and_usage}{Meaning and usage}\dotfill \pageref*{meaning_and_usage} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{SixOperationsYoga}{Six operations yoga}\dotfill \pageref*{SixOperationsYoga} \linebreak \noindent\hyperlink{RelationToGeometricRepresentationTheory}{Relation to geometric representation theory}\dotfill \pageref*{RelationToGeometricRepresentationTheory} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \noindent\hyperlink{blog_discussion}{Blog discussion}\dotfill \pageref*{blog_discussion} \linebreak \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} \hypertarget{in_terms_of_differential_operators}{}\subsubsection*{{In terms of differential operators}}\label{in_terms_of_differential_operators} A \emph{D-module} (introduced by [[Mikio Sato]]) is a [[abelian sheaf|sheaf]] of [[modules]] over the [[sheaf]] $D_X$ of [[regular differential operators]] on a `variety' $X$ (the latter notion depends on whether we work over a [[scheme]], [[manifold]], analytic complex manifold etc.), which is quasicoherent as $O_X$-module. As $O_X$ is a subsheaf of $D_X$ consisting of the zeroth-order differential operators (multiplications by the sections of structure sheaf), every $D_X$-module is an $O_X$-module. Moreover, the (quasi)coherence of $D_X$-modules implies the (quasi)coherence of a $D_X$-module regarded as an $O_X$-module (but not vice versa). \hypertarget{in_terms_of_sheaves_on_the_derham_space}{}\subsubsection*{{In terms of sheaves on the deRham space}}\label{in_terms_of_sheaves_on_the_derham_space} The category of $\mathcal{D}$-modules on a smooth scheme $X$ may equivalently be identified with the category of [[quasicoherent sheaf|quasicoherent sheaves]] on its [[deRham space]] $dR(X)$ (in non-smooth case one needs to work in derived setting, with de Rham stack instead). (\hyperlink{LurieCrystal}{Lurie, above theorem 0.4}, \hyperlink{GaitsgoryRozenblyum11}{Gaitsgory-Rozenblyum 11, 2.1.1}) Remembering, from this discussion there, that \begin{itemize}% \item the deRham space is the decategorification of the [[infinitesimal shape modality|infinitesimal path groupoid]] $\Pi_{inf}(X)$ of $X$; \item a quasicoherent sheaf on $dR(X)$ is a generalization of a [[vector bundle]] on $X$; \item a vector bundle with a flat [[connection on a bundle|connection]] is an [[equivariant cohomology|equivariant]] vector bundle on the infinitesimal path $\infty$-groupoid $\Pi^{inf}$ of $X$ \end{itemize} this shows pretty manifestly how D-modules are ``sheaves of modules with flat connection'', as described more below. \hypertarget{meaning_and_usage}{}\subsection*{{Meaning and usage}}\label{meaning_and_usage} $D$-modules are useful as a means of applying the methods of [[homological algebra]] and [[Categories and Sheaves|sheaf theory]] to the study of analytic systems of partial differential equations. Insofar as an $O$-module on a [[ringed site]] $(X, O)$ can be interpreted as a generalization of the [[sheaf]] of sections of a vector bundle on $X$, a D$-$module can be interpreted as a generalization of the [[sheaf]] of sections of a vector bundle on $X$ \emph{with flat [[connection]]} $\nabla$. The idea is that the action of the differential operation given by a vector field $v$ on $X$ on a section $\sigma$ of the sheaf (over some patch $U$) is to be thought of as the covariant derivative $\sigma \mapsto \nabla_v \sigma$ with respect to the flat connection $\nabla$. In fact when $X$ is a complex analytic manifold, any $D_X$-module which is coherent as $O_X$-module is isomorphic to the sheaf of sections of some holomorphic vector bundle with flat connection. Furthermore, the subcategory of nonsingular $D_X$-modules coherent as $D_X$-modules is equivalent to the category of [[local systems]]. If $X$ is a variety over a field of positive characteristic $p$, the terms ``$O_X$-coherent coherent $D_X$-module'' and ``vector bundle with flat connection'' are not interchangeable, since $D_X$ no longer is the enveloping algebra of $O_X$ and $\text{Der}_X(O_X,O_X)$. A theorem by Katz states that for smooth $X$ the category of $O_X$-coherent $D_X$-modules is equivalent to the category with objects sequences $(E_0, E_1,\ldots)$ of locally free $O_X$-modules together with $O_X$-isomorphisms $\sigma_i: E_i\rightarrow F^* E_{i+1}$, where $F$ is the Frobenius endomorphism of $X$. [[John Baez]]: it would be nice to have a little more explanation about how not every $D$-module that is coherent as an $O$-module is coherent as a $D$-module. If I understand correctly, this may be the same question as how not every holomorphic vector bundle with flat connection is a local system. Perhaps the answer can be found under [[local system]]? Apparently not. Perhaps the point is that not every flat connection on a holomorphic vector bundle is locally holomorphically trivializable? If so, this is different than how it works in the $C^\infty$ category, which might explain my puzzlement. \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{SixOperationsYoga}{}\subsubsection*{{Six operations yoga}}\label{SixOperationsYoga} Discussion of [[six operations yoga]] for pull-push of ([[coherent D-module|coherent]], [[holonomic D-module|holonomic]]) D-modules is in (\hyperlink{Bernstein}{Bernstein, around p. 18}). This is reviewed for instance in (\hyperlink{Etingof}{Etingof}, \hyperlink{BenZviNadler09}{Ben-Zvi \& Nadler 09}). \hypertarget{RelationToGeometricRepresentationTheory}{}\subsubsection*{{Relation to geometric representation theory}}\label{RelationToGeometricRepresentationTheory} For the moment see at \emph{[[Harish Chandra transform]]}. \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[coherent D-module]], [[holonomic D-module]] \item [[arithmetic D-module]] \item [[linear differential equation]] \item [[D-geometry]] \item [[D-scheme]] \item [[D-algebra]] \item [[crystalline cohomology]] \item [[Weyl algebra]], [[regular differential operator]], [[local system]], [[differential bimodule]], [[Grothendieck connection]], [[crystal]], [[algebraic analysis]]. \item [[Hecke category]], [[Harish Chandra transform]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} A comprehensive account is in chapter 2 of \begin{itemize}% \item [[Alexander Beilinson]] and [[Vladimir Drinfeld]], chapter 2 of \emph{[[Chiral Algebras]]} \item [[Armand Borel]] et al., \emph{Algebraic D-modules}, Perspectives in Mathematics, Academic Press, 1987 (\href{http://www.math.columbia.edu/~scautis/dmodules/boreletal.djvu}{djvu}) \item R. Hotta, K. Takeuchi, T. Tanisaki, \emph{D-modules, perverse sheaves, and representation theory}, Progress in Mathematics \textbf{236}, Birkh\"a{}user (\href{http://www.math.columbia.edu/~scautis/dmodules/hottaetal.pdf}{pdf}) \end{itemize} Discussion in [[derived algebraic geometry]] is in \begin{itemize}% \item [[Dennis Gaitsgory]], [[Nick Rozenblyum]], \emph{Crystals and D-modules}, Pure and Applied Mathematics Quarterly Volume 10 (2014) Number 1 (\href{http://arxiv.org/abs/1111.2087}{arXiv:1111.2087}, \href{http://www.intlpress.com/site/pub/pages/journals/items/pamq/content/vols/0010/0001/a002/index.html}{publisher}) \end{itemize} Lecture notes include \begin{itemize}% \item [[Jacob Lurie]], \emph{Notes on crystals and algebraic $\mathcal{D}$-modules} () \item S. C. Coutinho, \emph{A primer of algebraic D-modules}, London Math. Soc. Stud. Texts, 33, Cambridge University Press, Cambridge, 1995. xii+207 pp. \item [[Joseph Bernstein]], \emph{Algebraic theory of D-modules} ([[BernsteinDModule.pdf:file]], \href{http://www.math.uchicago.edu/~mitya/langlands/Bernstein/Bernstein-dmod.ps}{ps}, \href{http://www.math.uchicago.edu/~mitya/langlands/Bernstein/Bernstein-dmod.dvi}{dvi}) \item Peter Schneiders' \href{http://www.analg.ulg.ac.be/jps/rec/idm.pdf}{notes}, \item Dragan Milii`s \href{http://www.math.utah.edu/~milicic/Eprints/dmodules.pdf}{notes}, , \href{http://www.math.utah.edu/~milicic/Eprints/book.pdf}{Localization and representation theory of reductive Lie groups}; \item [[Victor Ginzburg]]`s 1998 Chicago notes \href{http://www.math.harvard.edu/~gaitsgde/grad_2009/Ginzburg.pdf}{pdf}; A. \item Braverman-T. Chmutova, \emph{Lectures on algebraic D-modules}, \href{http://www.math.harvard.edu/~gaitsgde/grad_2009/Dmod_brav.pdf}{pdf} \item R. Bezrukavnikov, MIT course notes, \href{http://www.math.harvard.edu/~gaitsgde/grad_2009/bezr_notes.pdf}{pdf} \item Notes in Gaitsgory's seminar \href{http://www.math.harvard.edu/~gaitsgde/grad_2009/SeminarNotes/Nov17-19%28Crystals%29.pdf}{pdf} \item A. [[Beilinson|Beĭlinson]], J. Bernstein, \emph{A proof of Jantzen's conjectures}, I. M. Gelfand Seminar, 1--50, Adv. Soviet Math., 16, Part 1, Amer. Math. Soc. 1993, \href{http://www.math.harvard.edu/~gaitsgde/grad_2009/BB%20-%20Jantzen.pdf}{pdf} \end{itemize} See also \begin{itemize}% \item [[Morihiko Saito]], \emph{Induced D-modules and differential complexes}, Bull. Soc. Math. France 117 (1989), 361--387, \href{http://smf4.emath.fr/Publications/Bulletin/117/pdf/smf_bull_117_361-387.pdf}{pdf} \item D. Gieseker, \emph{Flat vector bundles and the fundamental group in non-zero characteristics}, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 2 (1975), no. 1, 1--31. \item J.-E. Bj\"o{}rk, \emph{Rings of differential operators}, North-Holland Math. Library 21. North-Holland Publ. 1979. xvii+374 pp. \item [[Masaki Kashiwara|M. Kashiwara]], W.Schmid, \emph{Quasi-equivariant D-modules, equivariant derived category, and representations of reductive Lie groups}, Lie Theory and Geometry, in Honor of Bertram Kostant, Progress in Mathematics, Birkh\"a{}user, 1994, pp. 457--488 \item [[M. Kashiwara]], \emph{D-modules and representation theory of Lie groups}, Annales de l'institut Fourier, 43 no. 5 (1993), p. 1597-1618, \href{http://aif.cedram.org/item?id=AIF_1993__43_5_1597_0}{article}, \href{http://www.ams.org/mathscinet-getitem?mr=95b:22033}{MR95b:22033} \item P. Maisonobe, C. Sabbah, \emph{D-modules coh\'e{}rents et holonomes}, Travaux en cours, Hermann, Paris 1993. (collection of lecture notes) \item [[Donu Arapura]], \emph{Notes on D-modules and connection with Hodge theory}, \href{http://www.math.purdue.edu/~dvb/preprints/dmod.pdf}{pdf} \item Nero Budur, \emph{On the V-filtration of D-modules}, \href{http://arxiv.org/abs/math/0409123}{math.AG/0409123}, in ``Geometric methods in algebra and number theory'' Proc. 2003 conf. Univ. of Miami, edited by F. Bogomolov, Yu. Tschinkel \end{itemize} Review of [[six operations yoga]] for D-modules is in \begin{itemize}% \item [[Pavel Etingof]], \emph{Formalism of six functors on all (coherent) D-modules} (\href{http://www-math.mit.edu/~etingof/dmodfactsheet.pdf}{pdf}) \item [[David Ben-Zvi]], [[David Nadler]], section 3 of \emph{The Character Theory of a Complex Group} (\href{http://arxiv.org/abs/0904.1247}{arXiv:0904.1247}) \end{itemize} See also \begin{itemize}% \item A. Beilinson, I. N. Bernstein, \emph{A proof of Jantzen conjecture}, Adv. in Soviet Math. 16, Part 1 (1993), 1-50. MR95a:22022 \end{itemize} \hypertarget{blog_discussion}{}\subsection*{{Blog discussion}}\label{blog_discussion} \begin{itemize}% \item Secret Blogging Seminar \href{http://sbseminar.wordpress.com/2007/07/07/musings-on-d-modules/}{Musings on D-modules}, \href{http://sbseminar.wordpress.com/2007/07/14/musings-on-d-modules-part-2/}{Musings on D-modules, part 2} \item The Everything Seminar \href{http://cornellmath.wordpress.com/2007/09/06/d-module-basics-i/}{D-module Basics I}, \href{http://cornellmath.wordpress.com/2007/09/09/d-module-basics-ii/}{D-Module Basics II}. \end{itemize} [[!redirects D-modules]] [[!redirects twisted D-module]] [[!redirects twisted D-modules]] \end{document}