\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{mathbbol} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{DHR category} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{aqft}{}\paragraph*{{AQFT}}\label{aqft} [[!include AQFT and operator algebra contents]] \hypertarget{physics}{}\paragraph*{{Physics}}\label{physics} [[!include physicscontents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{abstract}{Abstract}\dotfill \pageref*{abstract} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{dhr_is_a_cstarcategory_with_a_direct_product}{DHR is a C-star-category with a direct product}\dotfill \pageref*{dhr_is_a_cstarcategory_with_a_direct_product} \linebreak \noindent\hyperlink{dhr_is_a_symmetric_monoidal_category}{DHR is a symmetric monoidal category}\dotfill \pageref*{dhr_is_a_symmetric_monoidal_category} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} Given a [[quantum field theory]] presented by a [[local net of observables]] ([[AQFT]]) \begin{displaymath} \mathcal{A} : Open(X) \to Algebras \end{displaymath} a \emph{local endomorphism} is a [[natural transformation|natural]] [[associative algebra|algebra]] [[homomorphism]] $\rho : \mathcal{A} \to \mathcal{A}$ which is supported (nontrivial) on a [[compact space|compact]] region of [[spacetime]] $X$. These \emph{local endomorphism} are physically interpreted as local [[charges]]. By the locality of the local net, one finds that local endomorphisms natural form a [[braided monoidal category]]. This is called the \emph{DHR category}. The DHR category is thus built from data used in [[DHR superselection theory]] and is used to provide a simplified proof of the [[Doplicher-Roberts reconstruction theorem]]. \hypertarget{abstract}{}\subsection*{{Abstract}}\label{abstract} After the definition of objects and arrows we show several structures that the DHR category has. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} See [[DHR superselection theory]] and [[Haag-Kastler vacuum representation]] for the terminology used here. \begin{defn} \label{}\hypertarget{}{} The transportable endomorphisms are the \textbf{[[objects]]} of the DHR category $\Delta$. \end{defn} \begin{defn} \label{}\hypertarget{}{} For two transportable endomorphisms the \textbf{set of [[intertwiners]]} are the \textbf{[[morphisms]]}. \end{defn} \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{dhr_is_a_cstarcategory_with_a_direct_product}{}\subsubsection*{{DHR is a C-star-category with a direct product}}\label{dhr_is_a_cstarcategory_with_a_direct_product} It is straightforward to see that $\Delta$ is a [[category]]: The [[identity]] morphism for each object in $\Delta$ is given by the identiy in $\mathcal{A}$. The [[composition]] of arrows is simply the composition of [[intertwiners]]: From \begin{displaymath} R \rho_1 = \rho_2 R \end{displaymath} \begin{displaymath} T \rho_2 = \rho_3 T \end{displaymath} follows \begin{displaymath} T R \rho_1 = \rho_3 T R \end{displaymath} Several structural properties follow immediatly from the definition: \begin{lemma} \label{}\hypertarget{}{} $\Delta$ is a $\mathbb{C}-$[[algebroid]]. \end{lemma} \begin{ulemma} $\Delta$ is a [[dagger-category]] since, if $R$ is an [[intertwiner]] of the pair $(\rho_1, \rho_2)$, then $R^*$ is obviously an [[intertwiner]] of the pair $(\rho_2, \rho_1)$. \end{ulemma} Combining these two structures we get that $\Delta$ is a [[star-category]]. Since the arrows inherit a norm, we actually get \begin{lemma} \label{}\hypertarget{}{} $\Delta$ is a [[C-star-category]]. \end{lemma} \begin{prop} \label{}\hypertarget{}{} It is possible to introduce a finite [[direct product]] in $\Delta$, if the net satisfies the [[Borchers property]]. \end{prop} \begin{remark} \label{}\hypertarget{}{} The [[Haag-Kastler vacuum representation]] that we talk about here satisfies the [[Borchers property]]. \end{remark} \begin{proof} Let $\pi_1, \pi_2$ be admissible representations and $\rho_1, \rho_2$ be their transportable [[localized endomorphism|endomorphisms localized]] in $K_1, K_2$ respectively. Choose a double cone $K_0 \in \mathcal{J}_0$ that contains $K_1$ and $K_2$. Since the local von Neumann algebra $\mathcal{M}(K_0)$ is not trivial, it contains a nontrivial projection $E$, that is $0 \lt E \lt \mathbb{1}$. Thanks to the Borchers property there is a double cone $K$ containing the closure of $K_0$, and partial isometries $W_1, W_2 \in \mathcal{M}(K)$ such that $W_1 W_1^* = E, W_2 W_2^* = \mathbb{1} - E$. Now we set \begin{displaymath} \rho := W_1 \rho_1 W_1^* + W_2 \rho_2 W_2^* \end{displaymath} It is possible to show that $\pi_0 \rho$ is unitarily equivalent to $\pi_1 \oplus \pi_2$ and that $\rho$ is a transportable (and therefore in particular a localized) endomorphism. So we will call $\rho$ a \textbf{direct sum} of $\rho_1$ and $\rho_2$. \end{proof} \hypertarget{dhr_is_a_symmetric_monoidal_category}{}\subsubsection*{{DHR is a symmetric monoidal category}}\label{dhr_is_a_symmetric_monoidal_category} We first define the ``[[tensor product]]'': \begin{defn} \label{}\hypertarget{}{} For endomorphisms we set $\rho_1 \otimes \rho_2 := \rho_1 \rho_2$. For intertwiners $S \in Hom(\rho, \rho^{\prime})$ and $T \in Hom(\sigma, \sigma^{\prime})$ we define the tensor product via $S \otimes T := S \rho(T)$. \end{defn} \begin{remark} \label{}\hypertarget{}{} In the [[AQFT]] literature the tensor product of arrows is sometimes called the \emph{crossed product} of intertwiners. \end{remark} \begin{lemma} \label{}\hypertarget{}{} The tensor product as defined above turns $\Delta$ into a [[monoidal category]]. \end{lemma} \begin{proof} First: The tensor product of arrows is well defined, for any $A \in \mathcal{A}$ we have: \begin{displaymath} S \otimes T (\rho_1 \otimes \rho_2) (A) = (S \rho(T)) \rho (\sigma(A)) = S \rho(T \sigma(A)) = \rho^{\prime} (T \sigma(A)) S = \rho^{\prime} (\sigma^{\prime}(A) T) S = \rho^{\prime} \sigma^{\prime}(A) \rho^{\prime}(T) S = \rho^{\prime} \sigma^{\prime}(A) S \rho(T) \end{displaymath} which shows that the tensor product of intertwiners is an intertwiner for the tensor product of endomorphisms. The unit object is the identity endomorphism $\mathbb{1} \in \mathcal{A}$, left and right unitor and the associator are the identities, that is, $\Delta$ is \textbf{strict}. \end{proof} Now to the braiding. The braiding is [[symmetric monoidal category|symmetric]] in $d \ge 3$ dimensions only, this has a topological reason: The causal complement of a double cone is pathwise connected in $d \ge 3$ dimensions only, but not in $d \le 2$ dimensions. \begin{remark} \label{}\hypertarget{}{} When we talk about $d = 1$ dimensions we mean one space dimension and zero time dimensions, so that a double cone in this context is simply an open interval, and spacelike separated double cones are simply disjoint open intervals. To define the braiding we will need the following concepts: \end{remark} \begin{defn} \label{}\hypertarget{}{} For transportable endomorphisms $\rho, \sigma$ choose causally separated double cones $K_1 \perp K_2$ and $\rho_0 \in \hat \rho$ localized in $K_1$ and $\sigma_0 \in \hat \sigma$ localized in $K_2$. These endomorphisms $\rho_0, \sigma_0$ are then called \textbf{spectator endomorphisms} of $\rho$ and $\sigma$. \end{defn} Note that it is a theorem that causally disjoint transportable endomorphisms commute, therefore spectator endomorphisms always commute. \begin{defn} \label{}\hypertarget{}{} For transportable endomorphisms $\rho, \sigma$ and spectator endomorphisms $\rho_0, \sigma_0$ choose unitary interwiners $U \in Hom(\rho, \rho_0)$ and $V \in \Hom(\sigma, \sigma_0)$. Such unitaries are called \textbf{transporters}. \end{defn} Obviously both spectator endomorphisms and transporters are not unique, in general. \begin{defn} \label{}\hypertarget{}{} For transportable endomorphisms $\rho, \sigma$, spectator endomorphisms $\rho_0, \sigma_0$ and transporters U, V define the \textbf{permutator} or \textbf{permutation symmetry} via \begin{displaymath} \epsilon(\rho, \sigma) := (V^* \otimes U^*) (U \otimes V) \end{displaymath} \end{defn} \begin{prop} \label{}\hypertarget{}{} The permutators are well defined and independent of the choice of spectator endomorphisms and transporters. \end{prop} \hypertarget{references}{}\subsection*{{References}}\label{references} See at \emph{[[DHR superselection theory]]}. [[!redirects DHR categories]] \end{document}