\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{mathbbol} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{DHR superselection theory} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{aqft}{}\paragraph*{{AQFT}}\label{aqft} [[!include AQFT and operator algebra contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{abstract}{Abstract}\dotfill \pageref*{abstract} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{general}{General}\dotfill \pageref*{general} \linebreak \noindent\hyperlink{in_terms_of_local_net_cohomology}{In terms of local net cohomology}\dotfill \pageref*{in_terms_of_local_net_cohomology} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} The DHR superselection theory is about [[superselection sectors]] in the [[Haag-Kastler approach]] to [[AQFT]]. As such, it has to state one or more conditions on representations of the given [[Haag-Kastler net]] that specify the representations of the quasi-local algebra that are deemed physically admissible. It is named after [[Sergio Doplicher]], [[Rudolf Haag]] and [[John Roberts]]. In the following we consider the theory starting with a [[Haag-Kastler vacuum representation]] on [[Minkowski spacetime]]. The DHR condition says that \textbf{all expectation values (of all observables) should approach the vacuum expectation values, uniformly, when the region of measurement is moved away from the origin.} This is one possible abstraction of the situation in a high energy particle collider, where the registered events are localized both in time and in space. The DHR condition excludes long range forces like electromagnetism from consideration, because, by [[Stokes' theorem]], the electric charge in a finite region can be measured by the flux of the field strength through a sphere of arbitrary large radius. The DHR analysis is of interest nevertheless, because it has reached a certain maturity and is therefore an excellent object to study: see for example the [[Doplicher-Roberts reconstruction theorem]]. \hypertarget{abstract}{}\subsection*{{Abstract}}\label{abstract} After the definition of admissible representations we collect some notions that will enable us to state a description of all admissible representations using intrinsic properties of the quasi-local algebra. The central concept that we define is that of a \textbf{transportable endomorphism}, these form the objects of a [[category]], the [[DHR category]]. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} We start with a [[Haag-Kastler vacuum representation]] that we assume to be irreducible and [[Haag dual]]. Let $\pi_0$ be the vacuum representation from now on, $K$ denote double cones and $\mathcal{J}_0$ be the [[causal index set]] of double cones, just as $\mathcal{O}$ are bounded open sets and $\mathcal{J}$ the [[causal index set]] of bounded open sets. Recall that the [[C-star algebra]] \begin{displaymath} \mathcal{A} := clo_{\| \cdot \|} \bigl( \bigcup_{\mathcal{O}\in\mathcal{J}}\mathcal{M}(\mathcal{O}) \bigr) \end{displaymath} is called the quasi-local algebra of the given net. We will in the same way associate a [[C-star algebra]] to every open region $\mathcal{O}_0$ via \begin{displaymath} \mathcal{A}(\mathcal{O}_0) := clo_{\| \cdot \|} \bigl( \bigcup_{\mathcal{O}_0 \supseteq \mathcal{O}\in\mathcal{J}}\mathcal{M}(\mathcal{O}) \bigr) \end{displaymath} \begin{defn} \label{}\hypertarget{}{} A representation $\pi$ of the local algebra $\mathcal{A}$ is called (DHR) \textbf{admissible} if $\pi | \mathcal{A}(\mathcal{K}^{\perp})$ is unitarily equivalent to $\pi_0 | \mathcal{A}(\mathcal{K}^{\perp})$ for all $K \in \mathcal{J}_0$, that is, for all double cones $K$. \end{defn} Note that the equivalence of the representations is required for the causal complement of \emph{all} double cones, not a special one, so that the characterization that ``the representations can not be distinguished at space-like infinity'' is misleading. \begin{defn} \label{}\hypertarget{}{} Recall that a mapping \begin{displaymath} \rho: \mathcal{A} \to \mathcal{A} \end{displaymath} is called a \textbf{unital endomorphism} if $\rho$ is linear, multiplicative ($\rho(AB) = \rho(A) \rho(B)$) and $\rho(\mathbb{1})=1$. \end{defn} We will drop ``unitarily'' from now on. \begin{remark} \label{RepresentationsFromEndomorphismsAndViceVersa}\hypertarget{RepresentationsFromEndomorphismsAndViceVersa}{} For any representation $\pi$ and endomorphism $\rho$ the composition $\pi \circ \rho$ is another representation. Conversely, under the assumption of [[Haag duality]] every DHR admissible representation $\rho$ comes from an endomorphism this way. For let $A \in \mathcal{A}(K)$ and $B \in \mathcal{A}(K^\pert)$ be any two causally unrelated localized obserbales. Then for $\rho : \mathcal{A} \to \mathcal{B}(\mathcal{H})$ a DHR representation, we have on the one hand \begin{displaymath} \rho(A B) = \rho(A) \pi_0(B) \end{displaymath} and on the other, due to the causal structure \begin{displaymath} \rho(A B) = \rho(B A) = \pi_0(B) \rho(A) \,. \end{displaymath} This says that $\rho(A) \in \pi_0(\mathcal{A}(K'))'$ and hence by [[Haag duality]] $\cdots \in \pi_0(\mathcal{A}(K))''$. Under the assumption that the [[local net of observables]] takes values in [[von Neumann algebras]] this in turn in $\cdots = \pi_0(\mathcal{A}(K))$ and so $\rho$ indeed factors as an endomrphism of $\mathcal{A}$ followed by the vaccum representation. \end{remark} For this reason one can hope to gain some insights into the representations by studying the endomorphisms, while the set of endomorphisms has certainly more structure than that of representations: For example, endomorphisms may have inverses, and endomorphisms form a [[monoid]] by composition. First we define ``unitarily equivalent'' and ``intertwiner'' analog to the definition for [[representations of C-star algebras]]: \begin{defn} \label{}\hypertarget{}{} Two endomorphisms $\rho_1, \rho_2$ are \textbf{unitarily equivalent} if there is a [[unitary operator]] $U \in \mathcal{A}$ such that $\rho_1 = ad(U) \rho_2 = U \rho_2 U^{-1}$. The endomorphisms $ad(U)$ with $U \in \mathcal{A}$ are called \textbf{inner automorphisms} (of $\mathcal{A}$). An element $R \in \mathcal{A}$ such that $R \rho_1 = \rho_2 R$, not necessarily unitary, is called an \textbf{intertwiner} or \textbf{intertwining operator}. \end{defn} The DHR selection criterion selects representations that ``look like the vaccum'' on the causal complement of elements of our index set (in this case the double cones). The analog for endomorphims is this: \begin{defn} \label{}\hypertarget{}{} An endomorphim $\rho$ is \textbf{[[localized endomorphism|localized]]} or \textbf{localizable} if there is a bounded open set $\mathcal{O} \in \mathcal{J}$ such that $\rho$ is the identity on the algebra of the causal complement $\mathcal{A}(\mathcal{O}^{\perp})$. Such an endomorphism is \textbf{localized in $\mathcal{O}$}. \end{defn} We have to restrict the notion of ``unitarily equivalent'' to a ``localized'' version accordingly: \begin{defn} \label{}\hypertarget{}{} An element $A \in \mathcal{A}$ is a \textbf{local operator} if there is a double cone K such that $A \in \mathcal{M}(K)$. In particular, a local unitary operator $U$ is a \textbf{local unitary}, and two endomorphisms are \textbf{locally unitarily equivalent} if there is a unitary as in the definition of unitarily equivalent that is a local operator. \end{defn} For an endomorphism $\rho$ let $\hat \rho$ be the equivalence class with respect to locally unitarily equivalence. Then we can define: \begin{defn} \label{}\hypertarget{}{} A [[localized endomorphism]] is \textbf{transportable} if for every bounded open set $\mathcal{O} \in \mathcal{J}$ there is a $\rho_0 \in \hat \rho$ that is localized in $\mathcal{O}$. \end{defn} Transportable endomorphisms naturally form the objects of a category, the [[DHR category]]. \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{general}{}\subsubsection*{{General}}\label{general} \begin{theorem} \label{}\hypertarget{}{} \textbf{transportable endomorphisms are compatible with the net structure} Let $\rho$ be a transportable endomorphism that is localized in the double cone $K_0$, then for all double cones $K \supset K_0$, $\rho$ maps $\mathcal{M}(K)$ to itself. \end{theorem} \begin{theorem} \label{}\hypertarget{}{} \textbf{intrinsic characterization of admissible representations} A representation $\pi$ of $\mathcal{A}$ is admissible iff there is a transportable endomorphism $\rho$ such that $\pi$ is unitarily equivalent to $\pi_0 \circ \rho$. \end{theorem} Reference: This is theorem 2.1.3 in the book by Baumg\"a{}rtel. \begin{theorem} \label{}\hypertarget{}{} \textbf{stability of admissible representations} (i) finite direct sums of admissible representations are admissible. (ii) subrepresentations of admissible representations are admissible. \end{theorem} For transportable endomorphisms we get even more: \begin{theorem} \label{}\hypertarget{}{} \textbf{products} The product, i.e. the concatenation, of transportable endomorphisms is a transportable endomorphism. \end{theorem} \begin{theorem} \label{}\hypertarget{}{} \textbf{product of causally disjoint localized endomorphisms is commutative} Let $\rho_1, \rho_2$ be transportable endomorphisms localized in $K_1, K_2$ respectivley with $K_1 \perp K_2$, then $\rho_1 \rho_2 = \rho_2 \rho_1$. \end{theorem} Note that the product of equivalenc classes is well defined, and $\hat \rho_1 \hat \rho_2 = \widehat{\rho_1\rho_2}$. Therefore the theorem above implies that the product of equivalence classes is commutative. \hypertarget{in_terms_of_local_net_cohomology}{}\subsubsection*{{In terms of local net cohomology}}\label{in_terms_of_local_net_cohomology} The DHR superselection theory has a reformulation in terms of [[cohomology of local net of observables|cohomology of local nets of observables]]. For the moment, see there for more. \hypertarget{references}{}\subsection*{{References}}\label{references} see [[AQFT]] ff. Of particular relevance (besides the original work of Doplicher and Roberts) are \begin{itemize}% \item Hellmut Baumg\"a{}rtel: \emph{Operator algebraic Methods in Quantum Field Theory. A series of lectures.} Akademie Verlag 1995 (\href{http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0839.46063&format=complete}{ZMATH entry}) \item [[Hans Halvorson]], [[Michael Müger]], \emph{Algebraic Quantum Field Theory} (\href{http://arxiv.org/abs/math-ph/0602036}{arXiv:math-ph/0602036}) \end{itemize} Discussion in the context of [[holographic entanglement entropy]]: \begin{itemize}% \item Horacio Casini, Marina Huerta, Javier M. Magan, Diego Pontello, \emph{Entanglement entropy and superselection sectors I. Global symmetries} (\href{https://arxiv.org/abs/1905.10487}{arXiv:1905.10487}) \end{itemize} [[!redirects DHR analysis]] [[!redirects Doplicher-Haag-Roberts superselection theory]] [[!redirects Doplicher-Haag-Roberts superselection sector]] [[!redirects Doplicher-Haag-Roberts superselection sectors]] \end{document}