\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{Day convolution} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{monoidal_categories}{}\paragraph*{{Monoidal categories}}\label{monoidal_categories} [[!include monoidal categories - contents]] \hypertarget{category_theory}{}\paragraph*{{Category theory}}\label{category_theory} [[!include category theory - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{ForMonoidalCategories}{For monoidal categories}\dotfill \pageref*{ForMonoidalCategories} \linebreak \noindent\hyperlink{InTermsOfCoends}{In terms of coends}\dotfill \pageref*{InTermsOfCoends} \linebreak \noindent\hyperlink{InTermsOfProfunctors}{In terms of profunctors}\dotfill \pageref*{InTermsOfProfunctors} \linebreak \noindent\hyperlink{for_promonoidal_categories}{For promonoidal categories}\dotfill \pageref*{for_promonoidal_categories} \linebreak \noindent\hyperlink{Properties}{Properties}\dotfill \pageref*{Properties} \linebreak \noindent\hyperlink{ClosedMonoidalStructure}{Closed monoidal structure}\dotfill \pageref*{ClosedMonoidalStructure} \linebreak \noindent\hyperlink{Monoids}{Monoids with respect to Day convolution}\dotfill \pageref*{Monoids} \linebreak \noindent\hyperlink{Modules}{Modules with respect to Day convolution}\dotfill \pageref*{Modules} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{References}{References}\dotfill \pageref*{References} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} The [[category of functors]] on a [[monoidal category]] canonically inherits itself a monoidal category structure via a [[categorification|categorified]] [[convolution product]]. This holds generally in the context of [[enriched category theory]]. This was first observed by (\hyperlink{Day70}{Day 70}) and accordingly these monoidal structures are called \emph{Day convolution} products. In more detail, just as there is [[convolution]] of [[functions]] $f : G \to \mathbb{C}$ whenever $G$ carries the structure of a [[group]], or more generally just the structure of a [[monoid]], so there is convolution of [[functors]] $f \colon \mathcal{G} \to Set$ whenever the [[category]] $\mathcal{G}$ carries the structure of a [[monoidal category]]. This may be generalized by replacing [[Set]] with a more general [[cocomplete category|cocomplete]] [[symmetric monoidal category]] $V$. The technical condition is that the [[tensor product]] $u \otimes v$ preserves [[colimits]] in its two arguments separately; hence that the functors $u \otimes -$ and $- \otimes v$ preserve colimits. This occurs notably when $V$ is symmetric [[closed monoidal category|closed monoidal]] (so that these functors are [[left adjoints]]). \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} \hypertarget{ForMonoidalCategories}{}\subsubsection*{{For monoidal categories}}\label{ForMonoidalCategories} Let $V$ be a [[closed monoidal category|closed]] [[symmetric monoidal category]] with all small [[limits]] and [[colimits]]. For $\mathcal{C}$ a $V$-[[enriched category]], write $[\mathcal{C},V]$ for the $V$-[[enriched functor category]] to $V$, etc. We discuss two equivalent ways of defining Day convolution \begin{enumerate}% \item \emph{\hyperlink{InTermsOfCoends}{In terms of coends}} \item \emph{\hyperlink{InTermsOfProfunctors}{In terms of profunctors}} \end{enumerate} \hypertarget{InTermsOfCoends}{}\paragraph*{{In terms of coends}}\label{InTermsOfCoends} \begin{defn} \label{TopologicalDayConvolutionProduct}\hypertarget{TopologicalDayConvolutionProduct}{} Let $(\mathcal{C}, \otimes, 1)$ be a [[small category|small]] $V$-enriched monoidal category. Then the \textbf{Day convolution tensor product} on $[\mathcal{C},V]$ \begin{displaymath} \otimes_{Day} \;\colon\; [\mathcal{C},V] \times [\mathcal{C},V] \longrightarrow [\mathcal{C},V] \end{displaymath} is given by the following [[coend]] \begin{displaymath} X \otimes_{Day} Y \;\colon\; c \;\mapsto\; \overset{(c_1,c_2)\in \mathcal{C}\times \mathcal{C}}{\int} \mathcal{C}(c_1 \otimes c_2, c) \otimes_V X(c_1) \otimes_V Y(c_2) \,. \end{displaymath} \end{defn} We observe now that [[Day convolution]] is equivalently a [[left Kan extension]]. This will be key for understanding [[monoids]] and [[modules]] with respect to Day convolution. \begin{defn} \label{ExternalTensorProduct}\hypertarget{ExternalTensorProduct}{} Let $\mathcal{C}$ be a [[small category|small]] $V$-monoidal category. Its \textbf{[[external tensor product]]} is \begin{displaymath} \overline{\otimes} \;\colon\; [\mathcal{C}, V] \times [\mathcal{C}, V] \longrightarrow [\mathcal{C}\times \mathcal{C}, V] \end{displaymath} given by \begin{displaymath} X \overline{\otimes} Y \;\coloneqq\; \otimes_V \circ (X,Y) \,, \end{displaymath} i.e. \begin{displaymath} (X \overline\otimes Y)(c_1,c_2) = X(c_1)\otimes_V Y(c_2) \,. \end{displaymath} \end{defn} \begin{prop} \label{DayConvolutionViaKanExtensionOfExternalTensorAlongTensor}\hypertarget{DayConvolutionViaKanExtensionOfExternalTensorAlongTensor}{} The [[Day convolution]] product (def. \ref{TopologicalDayConvolutionProduct}) of two functors is equivalently the [[left Kan extension]] of their external tensor product (def. \ref{ExternalTensorProduct}) along the tensor product $\otimes_{\mathcal{C}}$: there is a [[natural isomorphism]] \begin{displaymath} X \otimes_{Day} Y \simeq Lan_{\otimes_{\mathcal{C}}} (X \overline{\otimes} Y) \,. \end{displaymath} Hence the [[adjunction unit]] is a [[natural transformation]] of the form \begin{displaymath} \itexarray{ \mathcal{C} \times \mathcal{C} && \overset{X \overline{\otimes} Y}{\longrightarrow} && V \\ & {}^{\mathllap{\otimes}}\searrow &\Downarrow& \nearrow_{\mathrlap{X \otimes_{Day} Y}} \\ && \mathcal{C} } \,. \end{displaymath} \end{prop} This perspective is highlighted in (\hyperlink{MMSS00}{MMSS 00, p. 60}). \begin{proof} By prop. \ref{TopologicalLeftKanExtensionBCoend} we may compute the left Kan extension as the following [[coend]]: \begin{displaymath} \begin{aligned} Lan_{\otimes_{\mathcal{C}}} (X\overline{\otimes} Y)(c) & \simeq \overset{(c_1,c_2)}{\int} \mathcal{C}(c_1 \otimes_{\mathcal{C}} c_2, c ) \wedge (X\overline{\otimes}Y)(c_1,c_2) \\ & = \overset{(c_1,c_2)}{\int} \mathcal{C}(c_1 \otimes_{\mathcal{C}} c_2, c) \wedge X(c_1) \otimes_V Y(c_2) \end{aligned} \,. \end{displaymath} \end{proof} Proposition \ref{DayConvolutionViaKanExtensionOfExternalTensorAlongTensor} implies the following fact, which is the key for the identification of ``[[functors with smash product]]''. \begin{cor} \label{DayConvolutionViaNaturalIsosInvolvingExternalTensorAndTensor}\hypertarget{DayConvolutionViaNaturalIsosInvolvingExternalTensorAndTensor}{} The operation of [[Day convolution]] $\otimes_{Day}$ (def. \ref{TopologicalDayConvolutionProduct}) is universally characterized by the property that there are [[natural isomorphisms]] \begin{displaymath} [\mathcal{C}, V](X \otimes_{Day} Y, Z) \simeq [\mathcal{C}\times \mathcal{C}, V]( X \overline{\otimes} Y,\; Z \circ \otimes_C ) \,, \end{displaymath} where $\overline{\otimes}$ is the external product of def. \ref{ExternalTensorProduct}. \end{cor} \hypertarget{InTermsOfProfunctors}{}\paragraph*{{In terms of profunctors}}\label{InTermsOfProfunctors} The Day convolution can also be expressed in terms of [[profunctors]]. The tensor product $\otimes :\mathcal{C}\otimes \mathcal{C}\to \mathcal{C}$ induces a representable profunctor $\mathcal{C}(\otimes,1): \mathcal{C} ⇸ \mathcal{C}\otimes \mathcal{C}$. The above definition can be interpreted to say that if $X,Y\in [\mathcal{C},V]$ are regarded as profunctors $\mathcal{C} ⇸ I$, where $I$ is the unit $V$-category, then $X\otimes_{Day} Y$ is the composite of profunctors \begin{displaymath} \mathcal{C} \xrightarrow{\mathcal{C}(\otimes,1)} \mathcal{C}\otimes \mathcal{C} \xrightarrow{X\otimes Y} I\otimes I \cong I. \end{displaymath} A more ``global'' way to say the same thing is to consider the ``evaluation'' functor $[\mathcal{C},V] \otimes \mathcal{C} \to V$ to be a profunctor $E:\mathcal{C}⇸[\mathcal{C},V]^{op}$. Then the profunctor composite \begin{displaymath} \mathcal{C} \xrightarrow{\mathcal{C}(\otimes,1)} \mathcal{C}\otimes \mathcal{C} \xrightarrow{E\otimes E} [\mathcal{C},V]^{op} \otimes [\mathcal{C},V]^{op} \end{displaymath} is a functor $\mathcal{C}\otimes [\mathcal{C},V] \otimes [\mathcal{C},V] \to V$, which by exponential transpose gives a functor $[\mathcal{C},V] \otimes [\mathcal{C},V] \to [\mathcal{C},V]$; this is the Day convolution product. \hypertarget{for_promonoidal_categories}{}\subsubsection*{{For promonoidal categories}}\label{for_promonoidal_categories} The \hyperlink{InTermsOfProfunctors}{above} description in terms of profunctors makes it clear that the construction only depends on the representable profunctor induced by $\otimes : \mathcal{C}\otimes \mathcal{C}\to \mathcal{C}$, i.e. on the underlying [[promonoidal category]] of $\mathcal{C}$. In the original article (\hyperlink{Day70}{Day 70}), a stronger form of the convolution is discussed, in which $\mathcal{C}$ is assumed only to be a [[promonoidal category]]. Let $V$ be a [[Benabou cosmos]], and $\mathcal{C}$ a small $V$-[[enriched category]]. \begin{prop} \label{}\hypertarget{}{} There is an [[equivalence of categories]] between the category of [[pro-monoidal structures]] on $\mathcal{C}$ with strong pro-monoidal functors between them and the category of biclosed monoidal structures on $[\mathcal{C}^{op},V]$ with [[strong monoidal functors]] between them. \end{prop} This is claimed without proof in (\hyperlink{Day70}{Day 70}). \hypertarget{Properties}{}\subsection*{{Properties}}\label{Properties} \hypertarget{ClosedMonoidalStructure}{}\subsubsection*{{Closed monoidal structure}}\label{ClosedMonoidalStructure} \begin{prop} \label{DayConvolutionYieldsMonoidalCategoryStructure}\hypertarget{DayConvolutionYieldsMonoidalCategoryStructure}{} For $(\mathcal{C}, \otimes_{\mathcal{C}}, I)$ a [[small category|small]] [[monoidal category|monoidal]] $V$-[[enriched category]], the Day convolution product $\otimes_{Day}$ of def. \ref{DayConvolutionProduct} makes \begin{displaymath} ( [\mathcal{C}, V], \otimes_{Day}, y(I)) \end{displaymath} a [[monoidal category]] with [[tensor unit]] $y(I)$ co-represented by the tensor unit $I$ of $\mathcal{C}$. \end{prop} This may be deduced fairly abstractly from the \hyperlink{InTermsOfProfunctors}{above} description of Day convolution in terms of profunctors, using the associativity of the promonoidal structure on $\mathcal{C}$. \begin{prop} \label{DayMonoidalStructureIsClosed}\hypertarget{DayMonoidalStructureIsClosed}{} For $(\mathcal{C}, \otimes_{\mathcal{C}}, I)$ a [[small category|small]] [[monoidal category|monoidal]] $V$-[[enriched category]], the monoidal category with Day convolution $([\mathcal{C},V], \otimes_{Day}, y(I))$ from def. \ref{DayConvolutionYieldsMonoidalCategoryStructure} is a [[closed monoidal category]]. Its [[internal hom]] $[-,-]_{Day}$ is given by the [[end]] \begin{displaymath} [X,Y]_{Day}(c) \simeq \underset{c_1,c_2}{\int} V\left( \mathcal{C}(c \otimes_{\mathcal{C}} c_1,c_2), V(X(c_1), Y(c_2)) \right) \,. \end{displaymath} \end{prop} \begin{proof} In analogy to the cartesian [[closed monoidal structure on presheaves]] we see that if the [[internal hom]] in $[\mathcal{C},V]$ exists at all, (with $[X,-]_{Day}$ [[right adjoint]] to $(-) \otimes_{Day} X$) then by the [[enriched Yoneda lemma]] and by the [[end]]-expression for the [[hom-objects]] in the [[enriched functor category]] $[\mathcal{C},V]$ it has to be given by \begin{displaymath} \begin{aligned} [X,Y]_{Day}(c) & \simeq [\mathcal{C},V](y(c), [X,Y]) \\ & \simeq [\mathcal{C},V](y(c) \otimes_{Day} X, Y) \\ & \simeq \underset{c_1}{\int} V((y(c) \otimes_{Day} X)(c_1), Y(c_1)) \\ &\simeq \underset{c_1}{\int} V\left( \overset{d_2}{\int} \overset{d_1}{\int} \mathcal{C}(d_1 \otimes_{\mathcal{C}} d_2, c_1) \otimes_V \mathcal{C}(c,d_1) \otimes_V X(d_2) , Y(c_1) \right) \\ & \simeq \underset{c_1}{\int} \underset{d_2}{\int} V\left( \underset{\simeq \mathcal{C}(c \otimes_{\mathcal{C}} d_2, c_1 )}{ \underbrace{ \overset{d_1}{\int} \mathcal{C}(d_1 \otimes_{\mathcal{C}} d_2, c_1) \otimes_V \mathcal{C}(c,d_1) } } \otimes_V X(d_2) , Y(c_1) \right) \\ & \simeq \underset{c_1,d_2}{\int} V\left( \mathcal{C}(c \otimes_{\mathcal{C}} d_2,c_1), V(X(d_2), Y(c_1)) \right) \\ & = \underset{c_1,c_2}{\int} V\left( \mathcal{C}(c \otimes_{\mathcal{C}} c_1,c_2), V(X(c_1), Y(c_2)) \right) \end{aligned} \,. \end{displaymath} This exists, by the assumption that $\mathcal{C}$ is [[small category|small]] and that $V$ has all small limits. Now to check that this really gives a right adjoint: \begin{displaymath} \begin{aligned} [\mathcal{C},V]( X, [Y,Z]_{Day} ) & \simeq \underset{c}{\int} V\left( X(c), \underset{c_1,c_2}{\int} V\left( \mathcal{C}(c \otimes_{\mathcal{C}} c_1 , c_2), V(Y(c_1), Z(c_2)) \right) \right) \\ & \simeq \underset{c}{\int} \underset{c_1,c_2}{\int} V\left( \mathcal{C}(c \otimes_{\mathcal{C}} c_1, c_2) \otimes_V X(c) \otimes_V Y(c_1) ,\; Z(c_2) \right) \\ & \simeq \underset{c_2}{\int} V\left( \overset{c,c_1}{\int} \mathcal{C}(c \otimes_{\mathcal{C}} c_1, c_2) \otimes_V X(c) \otimes_V Y(c_1) ,\; Z(c_2) \right) \\ &\simeq \underset{c_2}{\int} V\left( (X \otimes_{Day} Y)(c_2), Z(c_2) \right) \\ &\simeq [\mathcal{C},V](X \otimes_{Day} Y, Z) \end{aligned} \,. \end{displaymath} \end{proof} \begin{prop} \label{}\hypertarget{}{} The [[Yoneda embedding]] constitutes a [[strong monoidal functor]] $(\mathcal{C},\otimes_{\mathcal{C}}, I) \hookrightarrow ([\mathcal{C},V], \otimes_{Day}, y(I))$. \end{prop} \begin{proof} That the [[tensor unit]] is respected is part of prop. \ref{DayConvolutionYieldsMonoidalCategoryStructure}. To see that the tensor product is respected, apply the [[co-Yoneda lemma]] twice to get the following natural isomorphism \begin{displaymath} \begin{aligned} (y(c_1) \otimes_{Day} y(c_2))(c) & \simeq \overset{d_1, d_2}{\int} \mathcal{C}(d_1 \otimes_{\mathcal{C}} d_2, c ) \otimes_V \mathcal{C}(c_1,d_1) \otimes_V \mathcal{C}(c_2,d_2) \\ & \simeq \mathcal{C}(c_1\otimes_{\mathcal{C}}c_2 , c ) \\ & = y(c_1 \otimes_{\mathcal{C}} c_2 )(c) \end{aligned} \,. \end{displaymath} \end{proof} \hypertarget{Monoids}{}\subsubsection*{{Monoids with respect to Day convolution}}\label{Monoids} Given any [[monoidal category]] then one may consider [[monoid objects]] and [[module objects]] inside it. \begin{prop} \label{DayMonoidsAreLaxMonoidalFunctorsOnTheSite}\hypertarget{DayMonoidsAreLaxMonoidalFunctorsOnTheSite}{} For $(\mathcal{C}, \otimes)$ a [[small category|small]] ([[symmetric monoidal category|symmetric]]) [[monoidal category|monoidal]] $V$-[[enriched category]], then ([[commutative monoid object|commutative]]) [[monoid objects]] in the Day convolution monoidal category $([\mathcal{C},V], \otimes_{Day}, y(I))$ of prop. \ref{DayConvolutionYieldsMonoidalCategoryStructure} are equivalent to ([[symmetric monoidal functor|symmetric]]) [[lax monoidal functors]] $\mathcal{C} \to V$: \begin{displaymath} Mon([\mathcal{C},V], \otimes_{Day}, y(I)) \simeq MonFunc(\mathcal{C},V) \end{displaymath} \begin{displaymath} CMon([\mathcal{C},V], \otimes_{Day}, y(I)) \simeq SymMonFunc(\mathcal{C},V) \,. \end{displaymath} Moreover, [[module objects]] over these monoid objects are equivalent to the corresponding [[modules over monoidal functors]]. \end{prop} This is stated in some form in (\hyperlink{Day70}{Day 70, example 3.2.2}). It was highlighted again in (\hyperlink{MMSS00}{MMSS 00, prop. 22.1}). See also MO discussion \href{http://mathoverflow.net/a/130619/381}{here}. \begin{proof} A [[lax monoidal functor]] $F \colon \mathcal{C} \to V$ is given by [[natural transformations]] \begin{displaymath} I_V \longrightarrow F(I_{\mathcal{C}}) \end{displaymath} \begin{displaymath} F(c_1) \otimes_V F(c_2) \longrightarrow F(c_1 \otimes_{\mathcal{C}} c_2) \end{displaymath} satisfying compatibility conditions. Under the [[natural isomorphism]] of corollary \ref{DayConvolutionViaNaturalIsosInvolvingExternalTensorAndTensor} these are identified with natural transformations \begin{displaymath} y(I) \to F \end{displaymath} \begin{displaymath} F \otimes_{Day} F \longrightarrow F \end{displaymath} satisfying analogous conditions. This is just the structure of a [[monoid object]] on $F$ under $\otimes_{Day}$. Similarly for [[module objects]] and [[modules over monoidal functors]]. \end{proof} \begin{example} \label{}\hypertarget{}{} In the case that $V$ is [[pointed topological spaces]] or pointed [[simplicial sets]] equipped with the [[smash product]] of [[pointed objects]] and that $\mathcal{C}$ is a diagram category for [[spectra]], then monoids in prop. \ref{DayMonoidsAreLaxMonoidalFunctorsOnTheSite} are known as [[ring spectra]] and the [[lax monoidal functors]] in prop. \ref{DayMonoidsAreLaxMonoidalFunctorsOnTheSite} are known as the incarnation of ring spectra as ``[[functors with smash product]]''. \end{example} (\hyperlink{MMSS00}{MMSS 00, section 22}). \hypertarget{Modules}{}\subsubsection*{{Modules with respect to Day convolution}}\label{Modules} \begin{defn} \label{FreeModulesOverAMonoidInDayConvolution}\hypertarget{FreeModulesOverAMonoidInDayConvolution}{} For $(\mathcal{C},\otimes, I)$ a [[small category|small]] [[monoidal category|monoidal]] $V$-[[enriched category]], and for $R \in Mon([\mathcal{C}, V],\otimes_{Day})$ a [[monoid object]] with respect to [[Day convolution]] over $\mathcal{C}$, write \begin{displaymath} R Free_{\mathcal{C}}Mod \hookrightarrow R Mod \end{displaymath} for the [[full subcategory]] of the [[category of modules]] over $R$ on those that are [[free modules]] and moreover free on objects in $\mathcal{C}$ (under the [[Yoneda embedding]]). Hence the [[objects]] of $R Free_{\mathcal{C}}Mod$ are those of $\mathcal{C}$ and the [[hom-objects]] are \begin{displaymath} R Free_{\mathcal{C}}Mod(c_1,c_2) \;\coloneqq\; R Mod( y(c_1) \otimes_{Day} R , y(c_2) \otimes_{Day} R) \,. \end{displaymath} \end{defn} \begin{prop} \label{ModulesInDayConvolutionAreFunctorsOnFreeModulesOp}\hypertarget{ModulesInDayConvolutionAreFunctorsOnFreeModulesOp}{} For $(\mathcal{C},\otimes, I)$ a [[small category|small]] $V$-[[enriched category]], and for $R \in Mon([\mathcal{C}, V],\otimes_{Day})$ a [[monoid object]] with respect to [[Day convolution]] over $\mathcal{C}$, then there is an [[equivalence of categories]] \begin{displaymath} Mod_R \simeq [R Free_{\mathcal{C}}Mod^{op}, V] \end{displaymath} between the [[category of modules|category of right modules]] over $R$ and the [[enriched functor category]] out of the [[opposite category]] of that of free $R$-modules from def. \ref{FreeModulesOverAMonoidInDayConvolution}. \end{prop} (\hyperlink{MMSS00}{MMSS 00, theorem 2.2}) \begin{proof} Use the identification from prop. \ref{DayMonoidsAreLaxMonoidalFunctorsOnTheSite} of $R$ with a [[lax monoidal functor]] and of any $R$-[[module object]] $N$ as a functor with the structure of a [[module over a monoidal functor]], given by [[natural transformations]] \begin{displaymath} N(c_1) \otimes R(c_2) \longrightarrow N(c_1 \otimes c_2) \,. \end{displaymath} Notice that these transformations have just the same structure as those of the [[enriched functor|enriched functoriality]] of $N$ of the form \begin{displaymath} \mathcal{C}(c_1,c_2) \otimes N(c_1) \longrightarrow N(c_2) \,. \end{displaymath} Hence we may unify these two kinds of transformations into a single kind of the form \begin{displaymath} \mathcal{C}(c_1 \otimes c_4, c_2) \otimes R(c_4) \otimes N(c_1) \longrightarrow \mathcal{C}(c_1 \otimes c_4, c_2) \otimes N(c_1 \otimes c_4) \longrightarrow N(c_2) \end{displaymath} and subject to certain identifications. Now observe that the hom-objects of $R Free_{\mathcal{C}}Mod$ (def. \ref{FreeModulesOverAMonoidInDayConvolution}) have just this structure: \begin{displaymath} \begin{aligned} R Free_{\mathcal{C}}Mod(c_2,c_1) & = R Mod( y(c_2) \otimes_{Day} R , y(c_1) \otimes_{Day} R) \\ & \simeq [\mathcal{C},V](y(c_2), y(c_1) \otimes_{Day} R) \\ & \simeq (y(c_1) \otimes_{Day} R)(c_2) \\ & \simeq \overset{c_3,c_4}{\int} \mathcal{C}(c_3 \otimes c_4,c_2) \otimes_V \mathcal{C}(c_1, c_3) \otimes_V R(c_4) \\ & \simeq \overset{c_4}{\int} \mathcal{C}(c_1 \otimes c_4,c_2) \otimes_V R(c_4) \end{aligned} \,. \end{displaymath} We claim that under this identification, composition in $R Free_{\mathcal{C}}Mod$ is given by \begin{displaymath} \begin{aligned} R Free_{\mathcal{C}}Mod(c_2, c_1) \otimes_V R Free_{\mathcal{C}}Mod(c_3, c_2) & = \left( \overset{c_4}{\int} \mathcal{C}(c_1 \otimes_{\mathcal{C}} c_4, c_2) \otimes_V R(c_4) \right) \otimes_V \left( \overset{c_5}{\int} \mathcal{C}(c_2 \otimes_{\mathcal{C}} c_5, c_3 ) \otimes_V R(c_5) \right) \\ & \simeq \overset{c_4, c_5}{\int} \mathcal{C}(c_1 \otimes_{\mathcal{C}} c_4 , c_2 ) \otimes_V \mathcal{C}(c_2 \otimes_{\mathcal{C}} c_5, c_3) \otimes_V R(c_4) \otimes_V R(c_5) \\ & \longrightarrow \overset{c_4,c_5}{\int} \mathcal{C}(c_1 \otimes_{\mathcal{C}} c_4 \otimes_{\mathcal{C}} c_5 , c_2 \otimes_{\mathcal{C}} c_5 ) \otimes_V \mathcal{C}(c_2 \otimes c_5, c_3) \otimes_V R(c_4 \otimes_{\mathcal{C}} c_5 ) \\ & \longrightarrow \overset{c_4, c_5}{\int} \mathcal{C}(c_1\otimes_{\mathcal{C}} c_4 \otimes_{\mathcal{C}} c_5 , c_3) \otimes_V R(c_4 \otimes_{\mathcal{C}} c_5 ) \\ & \longrightarrow \overset{c_4}{\int} \mathcal{C}(c_1 \otimes_{\mathcal{C}} c_4 , c_3) \otimes_V R(c_4 ) \end{aligned} \,, \end{displaymath} where \begin{enumerate}% \item the first morphism is, in the integrand, the tensor product of \begin{enumerate}% \item forming the tensor product of hom-objects of $\mathcal{C}$ with the identity of $c_5$ \begin{displaymath} \mathcal{C}(c_1 \otimes_{\mathcal{C}} c_4, c_2 ) \simeq \mathcal{C}(c_1 \otimes_{\mathcal{C}} c_4, c_2 ) \otimes_V 1_V \overset{}{\longrightarrow} \mathcal{C}(c_1 \otimes_{\mathcal{C}} c_4, c_2 ) \otimes \mathcal{C}(c_5,c_5) \longrightarrow \mathcal{C}(c_1 \otimes_{\mathcal{C}} c_4 \otimes_{\mathcal{C}} c_5, c_2 \otimes_{\mathcal{C}} c_5) \end{displaymath} \item the monoidal functor incarnation $R(c_4) \otimes_V R(c_5)\longrightarrow R(c_4 \otimes_{\mathcal{C}} c_5 )$ of the monoid structure on $R$; \end{enumerate} \item the second morphism is, in the integrand, given by composition in $\mathcal{C}$; \item the last morphism is the morphism induced on [[coends]] by regarding [[extranatural transformation|extranaturality]] in $c_4$ and $c_5$ separately as a special case of extranaturality in $c_6 \coloneqq c_4 \otimes c_5$ (and then renaming). \end{enumerate} It is fairly straightforward to see that, under the above identifications, functoriality under this composition is equivalently functoriality in $\mathcal{C}$ together with the action property over $R$. \end{proof} \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \begin{example} \label{}\hypertarget{}{} Let $C$ be a [[discrete category]] over a set, which is hence a [[monoid]] (for instance a [[group]]) with product $\cdot$. Then the Day convolution product is \begin{displaymath} F \star G : e \mapsto \oplus_{c \cdot d = e} F(c) \times G(d) \,. \end{displaymath} Notice that if we regard the presheaves $F$ and $G$ here, assuming they take values in finite sets, as [[vertical categorification|categorifications]] of $\mathbb{N}$-valued functions $|F|, |G| : C \to \mathbb{N}$, where $|\cdot| : Set \to \mathbb{N}$ is the cardinality operation on finite sets, then this reproduces precisely the ordinary convolution product of these $\mathbb{N}$-valued functions \begin{displaymath} \begin{aligned} |F \star G| : e &\mapsto \sum_{c,d \in C} |F(c)| \times |G(d)| \times \delta(e, c \otimes d) & = \sum_{c \cdot d = e} |F(c)| \cdot |F(d)| \end{aligned} \end{displaymath} This uses in particular that for every object $c \in C$ the functor \begin{displaymath} Hom_C(c,-) = \delta_c \end{displaymath} is in this sense the Kronecker delta-function on the set $C$ supported at $c \in C$. Precisely because by assumption $C$ has only identity morphisms. \begin{displaymath} Hom_C(c,d) = \left\{ \itexarray{ * & if c = d \\ \emptyset & if c \neq d } \right. \end{displaymath} \end{example} Further examples: \begin{itemize}% \item There is an obvious monoidal structure on the [[cube category]]. By Day convolution this induces a monoidal structure on [[cubical set|cubical sets]]. This in turn induces a monoidal structure on [[strict omega-category|strict omega-categories]]. \item There is a monoidal structure on the [[augmented simplex category]] which by Day convolution induces a monoidal structure on the category of [[augmented simplicial sets]], which by restriction induces the [[join of simplicial sets|join operation]] on [[simplicial sets]]. \item If $C$ is a [[large category]] in one [[universe]], then its [[universe enlargement]] to a bigger universe can be given a closed monoidal structure via Day convolution. \item The [[semantics]] of [[linear logic]] obtained from Girard's ``phase spaces'', or more generally from [[ternary frames]], is essentially Day convolution for [[posets]]. \end{itemize} \begin{example} \label{SymmetricSmashProductOfSpectra}\hypertarget{SymmetricSmashProductOfSpectra}{} The [[symmetric smash product of spectra]] on, in particular, [[symmetric spectra]] and [[orthogonal spectra]] is the Day convolution product for [[Top]]-[[enriched functors]] on monoidal categories of [[symmetric groups]] of [[orthogonal groups]], respectively (\hyperlink{MMSS00}{MMSS 00, theorem 1.7 and section 21.}). Similarly the [[symmetric smash product of spectra]] on the [[model structure for excisive functors]] is Day convolution for [[sSet]]-[[enriched functors]] on the plain [[smash product]] of finite pointed [[simplicial sets]] (\hyperlink{Lydakis98}{Lydakis 98}). See also at \emph{[[functor with smash products]]}. \end{example} \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[monoidal topos]] \end{itemize} \hypertarget{References}{}\subsection*{{References}}\label{References} The concept originates in \begin{itemize}% \item [[Brian Day]], \emph{On closed categories of functors}, Reports of the Midwest Category Seminar IV, Lecture Notes in Mathematics Vol. 137. Springer-Verlag, 1970, pp 1-38 (\href{https://www.math.rochester.edu/people/faculty/doug/otherpapers/DayReport.pdf}{pdf}) \end{itemize} The universal property of the Day convolution, in the sense of free monoidal cocompletion, is discussed in \begin{itemize}% \item Geun Bin Im and G. M. Kelly, \emph{A universal property of the convolution monoidal structure}, J. Pure Appl. Algebra 43 (1986), no. 1, 75-88. \end{itemize} General discussion includes \begin{itemize}% \item [[Todd Trimble]] on Day convolution \href{http://golem.ph.utexas.edu/category/2008/01/the_concept_of_a_space_of_stat.html#c014365}{here} \end{itemize} The application of Day convolution to the construction of [[symmetric smash products of spectra]] for [[highly structured spectra]] is due to \begin{itemize}% \item [[Michael Mandell]], [[Peter May]], [[Stefan Schwede]], [[Brooke Shipley]], \emph{[[Model categories of diagram spectra]]}, Proceedings London Mathematical Society Volume 82, Issue 2, 2000 (\href{http://www.math.uchicago.edu/~may/PAPERS/mmssLMSDec30.pdf}{pdf}, \href{http://plms.oxfordjournals.org/content/82/2/441.short?rss=1&ssource=mfc}{publisher}) \end{itemize} and for [[excisive functors]] due to \begin{itemize}% \item Lydakis, \emph{Simplicial functors and stable homotopy theory} Preprint, available via Hopf archive, 1998 (\href{http://hopf.math.purdue.edu/Lydakis/s_functors.pdf}{pdf}) \end{itemize} (see also at [[functors with smash product]]). Day convolution for [[(∞,1)-categories]] is discussed in \begin{itemize}% \item Saul Glasman, \emph{Day convolution for infinity-categories} (\href{http://arxiv.org/abs/1308.4940}{arXiv:1308.4940}) \end{itemize} [[!redirects Day convolutions]] [[!redirects day convolution]] [[!redirects Day tensor product]] [[!redirects Day tensor products]] [[!redirects Day convolution product]] [[!redirects Day convolution products]] \end{document}