\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{De Donder-Weyl-Hamilton equation} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{variational_calculus}{}\paragraph*{{Variational calculus}}\label{variational_calculus} [[!include variational calculus - contents]] \hypertarget{physics}{}\paragraph*{{Physics}}\label{physics} [[!include physicscontents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{AsnplecticHamiltonEquation}{As a multisymplectic/$n$-plectic Hamiltonian equation}\dotfill \pageref*{AsnplecticHamiltonEquation} \linebreak \noindent\hyperlink{relativistic_form}{Relativistic form}\dotfill \pageref*{relativistic_form} \linebreak \noindent\hyperlink{nonrelativistic_form}{Non-relativistic form}\dotfill \pageref*{nonrelativistic_form} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} The \emph{De Donder-Weyl-Hamilton equation} is a refinement of [[Hamilton's equation]] from a single [[variational derivative|variational]] direction to many. Where [[Hamilton's equation]] appears as a natural condition in [[symplectic geometry]], so the De Donder-Weyl-Hamilton equation appears as the analogous condition in [[multisymplectic geometry]]/[[n-plectic geometry]]. Where [[Hamilton's equation]] appears as the [[equations of motion]] of a [[mechanical system]] whose [[dynamics]] is described by evolution along a single parameter ([[time]]), so the \emph{De Donder-Weyl Hamilton equation} appears as the [[equations of motion]] of a higher dimensional [[field theory]] given by a [[local Lagrangian]] where ``evolution'' is along more parameters ([[spacetime]]). \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} Let $\Sigma$ be a [[smooth manifold]] to be regarded as [[worldvolume]]/[[spacetime]] and let $F \to \Sigma$ be a smooth [[bundle]] to be thought of as the [[field bundle]]. For simplicity of exposition we first consider local patches and take without essential restriction $\Sigma$ to be a [[Cartesian space]] and the [[field bundle]] to be a trivial [[vector bundle]] $X \times \Sigma$. In all of the following the [[summation convention]] for summation over repeated induces is understood. We then denote the canonical [[coordinates]] on $\Sigma$ by $\{\sigma^\mu\}$ and those on $X$ by $\{\phi^i\}$. Write $(J^1 E^)^\ast$ for the dualized first [[jet bundle]] of $E$. Under the above assumptions this has canonical local coordinates $\{\sigma^\mu, \phi^i, \pi_i^\mu\}$. Here we call $\pi^\mu_i$ the ``$\mu$-th [[momentum]] of the $i$-th field''. Consider a [[local Lagrangian]] $L$ which is \emph{of first order}, hence which is a function on the first [[jet bundle]] $J^1 E$ of the [[field bundle]]. \begin{defn} \label{ELEquations}\hypertarget{ELEquations}{} Its [[Euler-Lagrange equations]] are \begin{displaymath} \partial_\mu \frac{\delta L }{\delta (\partial_\mu \phi^i)} = \frac{\delta L}{ \delta \phi^i} \,. \end{displaymath} \end{defn} \begin{defn} \label{dWHamiltonianByLegendre}\hypertarget{dWHamiltonianByLegendre}{} The \emph{De Donder-Weyl-Hamiltonian} of $L$ is its generalized [[Legendre transform]] (if it exists), the function \begin{displaymath} H \coloneqq \pi^\mu_i \partial_\mu \phi^i - L \end{displaymath} on the dual jet bundle. \end{defn} \begin{prop} \label{DWHEquations}\hypertarget{DWHEquations}{} In terms of the De Donder-Weyl Hamiltonian $H$, def. \ref{dWHamiltonianByLegendre}, the [[Euler-Lagrange equations of motion]], def. \ref{ELEquations}, are equivalent to the [[differential equations]] \begin{displaymath} \partial_\mu \phi^i = \frac{\partial H}{\partial \pi_i^\mu} \;\;\,, \;\;\;\; \partial_\mu \pi^\mu_i = - \frac{\partial H}{ \partial \phi^i} \,. \end{displaymath} These are called the \textbf{De Donder-Weyl-Hamilton equations}. \end{prop} \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{AsnplecticHamiltonEquation}{}\subsubsection*{{As a multisymplectic/$n$-plectic Hamiltonian equation}}\label{AsnplecticHamiltonEquation} For $(X,\omega)$ a [[symplectic manifold]] and $H \in C^\infty(X)$ a [[smooth function]] regarded as a [[Hamiltonian]], then [[Hamilton's equations]] are equivalent to \begin{displaymath} \iota_v \omega = \mathbf{d}H \end{displaymath} for $v$ a [[tangent vector]] to a [[trajectory]] in [[phase space]]. This may be referred to as the ``non-relativistic'' form of the symplectic version of Hamilton's equations, as the ``[[time]]''-parameter is not part of the [[phase space]]. By passing from plain phase space to the corresponding [[multisymplectic geometry|dual jet bundle]], hence by adjoining a [[worldline]] coordinate $t$, this is equivalent to \begin{displaymath} \iota_v \Omega = 0 \end{displaymath} where now \begin{displaymath} \Omega = \omega + \mathbf{d}H \wedge \mathbf{d}t \,. \end{displaymath} This may accordingly be thought of as the [[relativity|relativistic]] version of Hamilton's equations. We now discuss the analog of both the ``non-relativistic'' and of this ``[[relativity|relativistic]] version'' of [[Hamilton's equation]] for the de Donder-Weyl-Hamilton equation. In both cases, the $n$-tuple of [[tangent vectors]] to a [[section]] which satisfies the [[equations of motion]] is characterized as a \emph{[[Hamiltonian n-vector field]]}. See there for more discussion. \hypertarget{relativistic_form}{}\paragraph*{{Relativistic form}}\label{relativistic_form} \begin{defn} \label{PrePlecticForm}\hypertarget{PrePlecticForm}{} Given a De Donder-Weyl-Hamiltonian $H$, def. \ref{dWHamiltonianByLegendre}, define a [[differential form]] \begin{displaymath} \Omega \in \Omega^{n+1}_{cl}((J^1 E)^\ast) \end{displaymath} on the dual jet bundle (the \emph{[[multisymplectic form]]} or \emph{[[n-plectic form|pre-(n+1)-plectic form]]}) by \begin{displaymath} \Omega \;\coloneqq \; \mathbf{d} \phi^i \wedge \mathbf{d} \pi^\mu_i \wedge (\iota_{\partial_\mu} vol_\Sigma) + \mathbf{d} H \wedge vol_\Sigma \,. \end{displaymath} \end{defn} \begin{prop} \label{DWHInRelativisticPlecticForm}\hypertarget{DWHInRelativisticPlecticForm}{} A [[section]] $(\phi^i, \pi^\mu_i) \colon \Sigma \to J^1 E^\ast$ of the dualized first [[jet bundle]] satisfies the [[equations of motion]], prop. \ref{DWHEquations}, precisely if its [[tangent vectors]] \begin{displaymath} v_\mu \coloneqq \partial_{\mu} + \frac{\partial \phi^i}{\partial \sigma^\mu} \partial_{\phi^i} + \frac{\partial \pi_i^\nu}{\partial \sigma^\mu} \partial_{p^\nu_i} \end{displaymath} jointly annihilate the pre-$(n+1)$-plectic form of def. \ref{PrePlecticForm} in that the [[equation]]: \begin{displaymath} (\iota_{v_1} \cdots \iota_{v_n}) \Omega = 0 \end{displaymath} holds. \end{prop} \begin{proof} First, the component of this equation which does not contain any $\mathbf{d}\sigma^\mu$ is \begin{displaymath} \iota_{v_i} \; \mathbf{d}\phi^i \wedge \mathbf{d}\pi^i_\mu = \mathbf{d}H \,. \end{displaymath} This is already equivalent to the DWH equation, prop. \ref{DWHEquations}. Second, this already implies that the components of the equation that are proportional to $\mathbf{d}\sigma^\mu$ are automatically satisfied; because these components are \begin{displaymath} \frac{\partial \phi^i}{\partial \sigma^\mu} \frac{\partial \pi_i^\mu}{\partial \sigma^\nu} \mathbf{d}\sigma^\nu - \frac{\partial \phi^i}{\partial \sigma^\nu} \frac{\partial \pi_i^\mu}{\partial \sigma^\mu} \mathbf{d}\sigma^\nu = \frac{\partial H}{\partial \phi^i}\frac{\partial \phi^i}{\partial \sigma^\nu} \mathbf{d}\sigma^\nu + \frac{\partial H}{\partial \pi_i^\mu}\frac{\partial \pi_i^\mu}{\partial \sigma^\nu} \mathbf{d}\sigma^\nu \end{displaymath} and inserting the DWH equations on the left makes the left side identically equal to the right hand side. \end{proof} \begin{remark} \label{}\hypertarget{}{} Proposition \ref{DWHInRelativisticPlecticForm} is indeed true in the general case where $H$ may be [[spacetime]] dependent (depend nontrivially on the $\sigma^\mu$). \end{remark} \hypertarget{nonrelativistic_form}{}\paragraph*{{Non-relativistic form}}\label{nonrelativistic_form} To obtain the ``non-relativistic'' form of the $(n+1)$-plectic form of the DWH equation, consider the \emph{affine} dual first jet bundle with canonical coordinates $\{\sigma^a , \phi^i, \pi^a_i, e \}$. \begin{remark} \label{}\hypertarget{}{} The canonical [[n-plectic form|pre-(n+1)-plectic form]] on the affine dual first jet bundle is \begin{displaymath} \omega \coloneqq \mathbf{d}\phi^i \wedge \mathbf{d}\phi^\mu_a \iota_{\partial_{\sigma^\mu}} vol_\Sigma + \mathbf{d}e \wedge vol_\Sigma \,. \end{displaymath} \end{remark} \begin{remark} \label{}\hypertarget{}{} Vector fields tangent to a [[section]] of the affine dual first jet bundle are of the form \begin{displaymath} v_\mu \coloneqq \partial_{\mu} + \frac{\partial \phi^i}{\partial \sigma^\mu} \partial_{\phi^i} + \frac{\partial \pi_i^\nu}{\partial \sigma^\mu} \partial_{p^\nu_i} + \frac{\partial e}{\partial \sigma^\mu} \partial_e \,. \end{displaymath} \end{remark} \begin{prop} \label{DWHInNonRelativisticPlecticForm}\hypertarget{DWHInNonRelativisticPlecticForm}{} On the affine dual first jet bundle the de Donder-Weyl-Hamilton equation characterizes those [[sections]] whose [[tangent vectors]] as above satisfy \begin{displaymath} (\iota_{v_1} \cdots \iota_{v_n}) \omega = \mathbf{d}(H + e) \end{displaymath} \end{prop} This has been pointed out in (\hyperlink{Helein02}{H\'e{}lein 02, around equation (4)}). \begin{proof} This is a slight variant of the proof of prop. \ref{DWHInRelativisticPlecticForm}. First, the component of the equation independend of $\mathbf{d}\sigma^\nu$ is \begin{displaymath} \iota_{v_i} \; \mathbf{d}\pi^i_\mu \wedge \mathbf{d}\phi^i + \mathbf{d}e = \mathbf{d}H + \mathbf{d}e \,. \end{displaymath} Here the term $\mathbf{d}e$ cancels on both sides and leaves the equation equivalent to the DWH equation as in the first step of the proof of prop. \ref{DWHInRelativisticPlecticForm}. Second, the component of the claimed equation proportional to $\mathbf{d}\sigma^\mu$ is now \begin{displaymath} \frac{\partial \phi^i}{\partial \sigma^\mu} \frac{\partial \pi_i^\mu}{\partial \sigma^\nu} \mathbf{d}\sigma^\nu - \frac{\partial \phi^i}{\partial \sigma^\nu} \frac{\partial \pi_i^\mu}{\partial \sigma^\mu} \mathbf{d}\sigma^\nu + \frac{\partial e}{\partial \sigma^\nu} \mathbf{d}\sigma^\nu = 0 \,. \end{displaymath} Inserting into this the DWH equation makes it equivalent to \begin{displaymath} \frac{\partial H}{\partial \phi^i}\frac{\partial \phi^i}{\partial \sigma^\nu} \mathbf{d}\sigma^\nu + \frac{\partial H}{\partial \pi_i^\mu}\frac{\partial \pi_i^\mu}{\partial \sigma^\nu} \mathbf{d}\sigma^\nu + \frac{\partial e}{\partial \sigma^\nu} \mathbf{d}\sigma^\nu = 0 \end{displaymath} This has a unique solution, up to a global constant, given by \begin{displaymath} e(\{ \sigma^\nu \}) = - H( \{ \phi^i(\{ \sigma^\nu \}), \pi^\mu_i (\{ \sigma^\nu \}) \} ) \,. \end{displaymath} \end{proof} \begin{remark} \label{}\hypertarget{}{} By the proof of prop. \ref{DWHInNonRelativisticPlecticForm} we have \emph{on shell} that $H + e = 0$ and that $\omega = \Omega$. \end{remark} \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[Hamiltonian n-vector field]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} Maybe the first example of what is now called De Donder-Weyl theory appeared in \begin{itemize}% \item [[Constantin Carathéodory]], \emph{\"U{}ber die Extremalen und geod\"a{}tischen Felder in der Variationsrechnung der mehrfachen Integrale}, Acta Sci. Math. (Szeged) 4 (1929) 193-216 \end{itemize} Then Weyl and de Donder independently published \begin{itemize}% \item [[Hermann Weyl]], \emph{Geodesic fields in the calculus of variations}, Ann. Math. (2) 36 (1935) 607-629. \item [[Théophile De Donder]], \emph{Th\'e{}orie invariante du calcul des variations}, Nuov. \'e{}d, Gauthiers--Villars, Paris 1935 \end{itemize} Reviews include \begin{itemize}% \item Wikipedia, \emph{\href{http://en.wikipedia.org/wiki/De_Donder%E2%80%93Weyl_theory}{De Donder-Weyl theory}} \item Narciso Rom\'a{}n-Roy, \emph{Multisymplectic Lagrangian and Hamiltonian Formalisms of Classical Field Theories}, SIGMA 5 (2009), 100 (\href{http://www.emis.de/journals/SIGMA/2009/100/}{journal}, \href{http://arxiv.org/abs/math-ph/0506022}{arXiv:math-ph/0506022}) \item [[Frédéric Hélein]], \emph{Hamiltonian formalisms for multidimensional calculus of variations and perturbation theory}, (\href{http://arxiv.org/abs/math-ph/0212036}{arXiv:math-ph/0212036}) \end{itemize} See also \begin{itemize}% \item I.V. Kanatchikov, \emph{De Donder-Weyl theory and a hypercomplex extension of quantum mechanics to field theory} , (\href{http://arxiv.org/abs/hep-th/9810165}{arXiv:hep-th/9810165}) \end{itemize} For more see the references at \emph{[[multisymplectic geometry]]}, at \emph{[[n-plectic geometry]]} and at \emph{[[Hamiltonian n-vector field]]}. [[!redirects de Donder-Weyl-Hamilton equation]] [[!redirects De Donder-Weyl hamiltonian]] [[!redirects de Donder-Weyl Hamiltonian]] [[!redirects Hamilton-De Donder-Weyl equation]] [[!redirects Hamilton-de Donder-Weyl equations]] [[!redirects Hamiltoni-De Donder-Weyl equations]] [[!redirects De Donder-Weyl equation]] [[!redirects de Donder-Weyl equations]] [[!redirects De Donder-Weyl formalism]] [[!redirects Hamilton-De Donder-Weyl equations of motion]] [[!redirects Hamilton-De Donder-Weyl equations of motion]] [[!redirects de Donder-Weyl theory]] [[!redirects De Donder-Weyl field theory]] \end{document}