\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{Dedekind zeta function} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{arithmetic_geometry}{}\paragraph*{{Arithmetic geometry}}\label{arithmetic_geometry} [[!include arithmetic geometry - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{special_values}{Special values}\dotfill \pageref*{special_values} \linebreak \noindent\hyperlink{adelic_integral_expression}{Adelic integral expression}\dotfill \pageref*{adelic_integral_expression} \linebreak \noindent\hyperlink{functional_equation}{Functional equation}\dotfill \pageref*{functional_equation} \linebreak \noindent\hyperlink{the_pole_and_the_class_number_formula}{The pole and the class number formula}\dotfill \pageref*{the_pole_and_the_class_number_formula} \linebreak \noindent\hyperlink{RelationToThetaFunctions}{Relation to other zeta-, theta-, and L-functions}\dotfill \pageref*{RelationToThetaFunctions} \linebreak \noindent\hyperlink{analogs_over_complex_curves}{Analogs over complex curves}\dotfill \pageref*{analogs_over_complex_curves} \linebreak \noindent\hyperlink{function_field_analogy}{Function field analogy}\dotfill \pageref*{function_field_analogy} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} The \emph{Dedekind zeta function} is a generalization of the [[Riemann zeta function]] from the [[rational numbers]]/[[integers]] to [[number fields]]/their [[rings of integers]]. The analog for [[function fields]] is the [[Weil zeta function]], while the generalization to [[higher dimensional arithmetic geometry]] are the [[arithmetic zeta functions]]. \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{special_values}{}\subsubsection*{{Special values}}\label{special_values} For $K$ a [[number field]] then all [[special values of L-functions|special values]] of the Dedekind zeta function $\zeta_K(n)$ for integer $n$ happen to be [[periods]] (\href{http://mathoverflow.net/a/54244/381}{MO comment}). Based on this (\hyperlink{Deligne79}{Deligne 79}) identified \emph{critical values} of $L$-functions (at certain integers) and conjectured that these are all these are algebraic multiples of [[determinants]] of [[matrices]] whose entries are [[periods]]. For more on this see at \emph{[[special values of L-functions]]}. \hypertarget{adelic_integral_expression}{}\subsubsection*{{Adelic integral expression}}\label{adelic_integral_expression} The Dedekind zeta function has an [[adelic integral]] expression in direct analogy to that of the [[Riemann zeta function]]. This is due to (\hyperlink{Tate50}{Tate 50}), highlighted by [[Ivan Fesenko]] in (\hyperlink{GoldfeldHundley11}{Goldfeld-Hundley 11, Interlude remark (1)}). \hypertarget{functional_equation}{}\subsubsection*{{Functional equation}}\label{functional_equation} The [[functional equation]] of the Dedekind zeta function follows from its [[adelic integral]] representation in direct analogy to how this works for the [[Riemann zeta function]]. This is due to (\hyperlink{Tate50}{Tate 50}), highlighted by [[Ivan Fesenko]] in (\hyperlink{GoldfeldHundley11}{Goldfeld-Hundley 11, Interlude remark (1)}). \hypertarget{the_pole_and_the_class_number_formula}{}\subsubsection*{{The pole and the class number formula}}\label{the_pole_and_the_class_number_formula} The Dedekind zeta function $\zeta_K$ of $K$ has a [[simple pole]] at $s = 1$. The \emph{[[class number formula]]} says that its [[residue]] there is proportional the the product of the [[regulator of a number field|regulator]] of $K$ with the [[class number]] of $K$ \begin{displaymath} \underset{s\to 1}{\lim} (s-1) \zeta_K(s) \propto ClassNumber_K \cdot Regulator_K \,. \end{displaymath} \hypertarget{RelationToThetaFunctions}{}\subsubsection*{{Relation to other zeta-, theta-, and L-functions}}\label{RelationToThetaFunctions} \begin{itemize}% \item The Dedekind zeta function $\zeta_K$ is the [[Artin L-function]] $L_{K,\sigma}$ for [[trivial representation|trivial]] [[Galois representation]] \begin{displaymath} \zeta_K = L_{K,1} \,. \end{displaymath} See at \emph{\href{Artin+L-function#RelationToDedekindZeta}{Artin L-function -- Relation with Dedekind zeta function}}. \item The Dedekind zeta function has an expression as an integral over a kernel given by a [[Hecke theta function]] (\hyperlink{Kowalski}{Kowalski (2.3) (2.4)}). \item The Dedekind zeta function of $K$ is equivalently the [[Hasse-Weil zeta function]] of $Spec(\mathcal{O}_K)$. \end{itemize} \hypertarget{analogs_over_complex_curves}{}\subsubsection*{{Analogs over complex curves}}\label{analogs_over_complex_curves} The [[function field analogy]] in view of the discussion at \emph{[[zeta function of an elliptic differential operator]]} says that the Dedekind zeta function is [[analogy|analogous]] to the regulated [[functional determinant|functional trace]] of a would-be ``[[Dirac operator]] on [[Spec(Z)]]''. [[!include zeta-functions and eta-functions and theta-functions and L-functions -- table]] Other identifications/analogies of the Riemann zeta function (and more generally the [[Dedekind zeta-function]]) with [[partition functions]] in [[physics]] have been proposed, in particular the \emph{[[Bost-Connes system]]}. [[!include zeta-functions and eta-functions and theta-functions and L-functions -- table]] \hypertarget{function_field_analogy}{}\subsubsection*{{Function field analogy}}\label{function_field_analogy} [[!include function field analogy -- table]] \hypertarget{references}{}\subsection*{{References}}\label{references} \begin{itemize}% \item [[John Tate]], \emph{Fourier analysis in number fields, and Hecke's zeta-functions}, Algebraic Number Theory (Proc. Instructional Conf., Brighton, 1965), Thompson, Washington, D.C., pp. 305--34 1950 \item Wikipedia, \emph{\href{http://en.wikipedia.org/wiki/Dedekind_zeta_function}{Dedekind zeta function}} \item E. Kowalski, section 1.4 of \emph{Automorphic forms, L-functions and number theory (March 12--16) Three Introductory lectures} (\href{http://www.math.ethz.ch/~kowalski/lectures.pdf}{pdf}) \item [[Dorian Goldfeld]], [[Joseph Hundley]], chapter 2 of \emph{Automorphic representations and L-functions for the general linear group}, Cambridge Studies in Advanced Mathematics 129, 2011 (\href{https://www.maths.nottingham.ac.uk/personal/ibf/text/gl2.pdf}{pdf}) \end{itemize} [[!redirects Dedekind zeta functions]] [[!redirects Dedekind zeta-function]] [[!redirects Dedekind zeta-functions]] \end{document}