\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{Deligne conjecture} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{higher_algebra}{}\paragraph*{{Higher algebra}}\label{higher_algebra} [[!include higher algebra - contents]] \hypertarget{cohomology}{}\paragraph*{{Cohomology}}\label{cohomology} [[!include cohomology - contents]] \hypertarget{homological_algebra}{}\paragraph*{{Homological algebra}}\label{homological_algebra} [[!include homological algebra - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{statement}{Statement}\dotfill \pageref*{statement} \linebreak \noindent\hyperlink{GeometricInterpretation}{Geometric interpretation}\dotfill \pageref*{GeometricInterpretation} \linebreak \noindent\hyperlink{for_higher_algebras_and_higher_monoidal_categories}{For higher algebras and higher monoidal categories}\dotfill \pageref*{for_higher_algebras_and_higher_monoidal_categories} \linebreak \noindent\hyperlink{history}{History}\dotfill \pageref*{history} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} \hypertarget{statement}{}\subsubsection*{{Statement}}\label{statement} The original \emph{Deligne conjecture} on the structure of [[Hochschild cohomology]] of an [[associative algebra]] and more generally an [[A-∞ algebra]] states that Hochschild cohomology naturally has the structure of a [[BV-algebra]] and that moreover the full Hochschild cohomology complex has the structure of an [[algebra over an operad]] over the ([[framed little disk operad|framed]]) [[little disk operad]]. (The second statement implies the first since ([[BV-algebra|BV]]-)[[nLab:Gerstenhaber algebra]]s are [[algebras over an operad]] over the (framed) little disk operad.) Proofs of the conjecture have been given first by \hyperlink{McClureSmith}{McClure-Smith} and others, then also by \hyperlink{KontsevichSoibelman}{Kontsevich-Soibelman}, and \hyperlink{Tamarkin}{Tamarkin}. A proof for general [[Ek-algebra]]s in [[symmetric monoidal (∞,1)-categories]] is in (\hyperlink{Lurie}{Lurie, section 2.5}). \hypertarget{GeometricInterpretation}{}\subsubsection*{{Geometric interpretation}}\label{GeometricInterpretation} A general geometric ([[higher geometry|higher geometric]]) interpretation has been indicated in \hyperlink{Ben-ZviFrancisNadler}{Ben-ZviFrancisNadler}. They observed (see [[Hochschild cohomology]] for details) that the Hochschild \emph{homology} of $\mathcal{O}(X)$ is naturally interpreted as the algebra of functions on the [[derived loop space]] $\mathcal{L}X$. In the presence of good [[geometric ∞-function theory]] this naturally induces an action of the [[little disk operad]] on $\mathcal{O}(\mathcal{L}X)$. Since a [[Gerstenhaber algebra]] is an algebra over the [[homology]] of the [[little disk operad]], this immediately explains the existence of this structure. See also \href{Hochschild+cohomology#DeligneConjectureViaDerivedMappingSpaces}{this prop}. \hypertarget{for_higher_algebras_and_higher_monoidal_categories}{}\subsubsection*{{For higher algebras and higher monoidal categories}}\label{for_higher_algebras_and_higher_monoidal_categories} More generally, analogs of the statement of the Deligne conjecture exist and work for $(\infty,n)$-algebras: [[k-tuply monoidal n-categories]]. This is closely related to the statement (and proofs) of the [[delooping hypothesis]]. This case is discussed in (\hyperlink{Francis}{Francis}) and (\hyperlink{Lurie}{Lurie}). In (\hyperlink{KockToen}{KockToen}) it is shown that in a [[monoidal model category]] that is also a [[simplicial model category]] the [[derived hom-space]] $\mathbb{R} Hom(I,I)$ from the tensor unit to itself is a [[Ek-algebra|E-2 algebra]]. \hypertarget{history}{}\subsubsection*{{History}}\label{history} Historically it was first found that there is the structure of a [[Gerstenhaber algebra]] on $HH^\bullet(A,A)$. By (\hyperlink{Cohen}{Cohen}) it was known that Gerstenhaber algebras arise as the [[homology]] of [[E2-algebra]]s in [[chain complex]]es. In a letter in 1993 Deligne wondered whether the [[Gerstenhaber algebra]] structure on the Hochschild cohomology $HH^\bullet(A,A)$ lifts to an [[E2-algebra]]-structure on the cochain complex $C^\bullet(A,A)$. In \hyperlink{GerstenhaberVoronov}{GerstenhaberVoronov (1994)} a resolution of the Gerstenhaber algebra structure was given, but the relationship to $E_2$-algebras remained unclear. In (\hyperlink{Tamarkin}{Tamarkin (1998)}) a genuine resolution in the [[model structure on operads]] of the Gerstenhaber operad was given and shown to act via the Gerstenhaber-Voronov construction on $C^\bullet(A,A)$. This proved Deligne's conjecture. Various authors later further refined this result. A summary of this history can be found in (\hyperlink{Hess}{Hess}). In \hyperlink{HuKrizVoronov}{Hu-Kriz-Voronov (2003)} it was further shown that for $A$ an [[En-algebra]], $C^\bullet(A,A)$ is an $E_{n+1}$-algebra. \hypertarget{references}{}\subsection*{{References}}\label{references} Direct proofs of the Deligne conjecture have been given in. \begin{itemize}% \item James McClure, Jeffrey Smith, \emph{A solution of Deligne's conjecture} (\href{http://arxiv.org/abs/math/9910126}{arXiv:math/9910126}) \end{itemize} \begin{itemize}% \item [[Maxim Kontsevich]], [[Yan Soibelman]], \emph{Deformations of algebras over operads and Deligne's conjecture} (\href{http://arxiv.org/abs/math/0001151}{arXiv:math/0001151}) \end{itemize} \begin{itemize}% \item [[Dmitry Tamarkin]], \emph{Another proof of M. Kontsevich formality theorem} (\href{http://arxiv.org/abs/math/9803025}{arXiv:math/9803025}) \end{itemize} \begin{itemize}% \item [[Clemens Berger]], [[Benoit Fresse]], \emph{Combinatorial operad actions on cochains} (\href{http://arxiv.org/abs/math/0109158}{arXiv:math/0109158}) \end{itemize} A review is in \begin{itemize}% \item [[Kathryn Hess]], \emph{Deligne's Hochschild cohomology conjecture} (\href{http://sma.epfl.ch/~hessbell/Pub_DeligneColloq.pdf}{pdf}) \end{itemize} \begin{itemize}% \item Cohen \end{itemize} \begin{itemize}% \item Gertstenhaber-Voronov \end{itemize} \begin{itemize}% \item Hu, Kriz, Voronov \end{itemize} A transparent [[higher geometry|higher geometric]] interpretation in a suitably dualizable context is indicated in \begin{itemize}% \item [[David Ben-Zvi]], [[John Francis]], [[David Nadler]], \emph{[[geometric infinity-function theory|Integral transforms and Drinfeld centers in derived algebraic geometry]]} (\href{http://arxiv.org/abs/0805.0157}{arXiv:0805.0157}) \end{itemize} \begin{itemize}% \item [[John Francis]], PhD thesis (\href{http://dspace.mit.edu/handle/1721.1/43792}{web}) \end{itemize} Section 2.5 of \begin{itemize}% \item [[Jacob Lurie]], \emph{[[Ek-Algebras]]} \end{itemize} A construction in [[monoidal model categories]] is in \begin{itemize}% \item [[Joachim Kock]], [[Bertrand Toen]], \emph{Simplicial localization of monoidal structures, and a non-linear version of Deligne's conjecture} Compositio Math. 141 (2005), 253-261 (\href{http://arxiv.org/abs/math.AT/0304442}{arXiv}) \end{itemize} [[!redirects Deligne conjectures]] \end{document}