\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{Demazure, lectures on p-divisible groups} [[!redirects lectures on p-divisible groups]] This entry is about the text \begin{itemize}% \item Michel Demazure, lectures on [[p-divisible group|p-divisible groups]] \href{http://sites.google.com/site/mtnpdivisblegroupsworkshop/lecture-notes-on-p-divisible-groups}{web} \end{itemize} \hypertarget{chapter_i_schemes_and_formal_schemes}{}\subsection*{{chapter I: schemes and formal schemes}}\label{chapter_i_schemes_and_formal_schemes} \hypertarget{1_functors}{}\subsubsection*{{1. $k$-functors}}\label{1_functors} [[I.1, k-functors]] \hypertarget{2_affine_schemes}{}\subsubsection*{{2. affine $k$-schemes}}\label{2_affine_schemes} [[I.1, k-functors|I.2, affine k-schemes]] \hypertarget{3_closed_and_open_subfunctors_schemes}{}\subsubsection*{{3. closed and open subfunctors; schemes}}\label{3_closed_and_open_subfunctors_schemes} [[I.3, open- and closed subfunctors; schemes]] \hypertarget{4_the_geometric_point_of_view}{}\subsubsection*{{4. the geometric point of view}}\label{4_the_geometric_point_of_view} [[I.4, the geometric point of view]] \hypertarget{5_finiteness_conditions}{}\subsubsection*{{5. finiteness conditions}}\label{5_finiteness_conditions} [[I.5, finiteness conditions]] \hypertarget{6_the_four_definitions_of_formal_schemes}{}\subsubsection*{{6. the four definitions of formal schemes}}\label{6_the_four_definitions_of_formal_schemes} [[I.6, the four definitions of formal schemes]] \hypertarget{7_operations_on_formal_schemes}{}\subsubsection*{{7. operations on formal schemes}}\label{7_operations_on_formal_schemes} [[I.7. operations on formal schemes]] \hypertarget{8_constant_and_tale_schemes}{}\subsubsection*{{8. constant- and \'e{}tale schemes}}\label{8_constant_and_tale_schemes} [[I.8, constant- and étale schemes]], [[the fundamental theorem of Galois theory]], [[Grothendieck's Galois theory]] \hypertarget{9_the_frobenius_morphism}{}\subsubsection*{{9. the Frobenius morphism}}\label{9_the_frobenius_morphism} [[I.9, the Frobenius morphism]] \hypertarget{10_frobenius_morphism_and_symmetric_products}{}\subsubsection*{{10. Frobenius morphism and symmetric products}}\label{10_frobenius_morphism_and_symmetric_products} [[I.10, Frobenius morphism and symmetric products]] \hypertarget{chapter_ii_groupschemes_and_formal_groupschemes}{}\subsection*{{chapter II: group-schemes and formal group-schemes}}\label{chapter_ii_groupschemes_and_formal_groupschemes} \hypertarget{1_groupfunctors}{}\subsubsection*{{1. group-functors}}\label{1_groupfunctors} [[II.1, group -functors]], [[k-group-functor]], [[k-group]] (=[[k-group scheme]]) \hypertarget{2_constant_and_tale_kgroups}{}\subsubsection*{{2. constant and \'e{}tale k-groups}}\label{2_constant_and_tale_kgroups} [[II.2, constant and étale k-groups]] \hypertarget{3_affine_kgroups}{}\subsubsection*{{3. affine k-groups}}\label{3_affine_kgroups} [[II.3, affine k-groups]] \hypertarget{4_kformal_groups_cartier_duality}{}\subsubsection*{{4. k-formal groups, Cartier duality}}\label{4_kformal_groups_cartier_duality} [[II.4, k-formal groups, Cartier duality]], [[Cartier duality]] \hypertarget{5_the_frobenius_and_the_verschiebung_morphism}{}\subsubsection*{{5. the Frobenius and the Verschiebung morphism}}\label{5_the_frobenius_and_the_verschiebung_morphism} [[II.5, the Frobenius and the Verschiebung morphism]] \hypertarget{6_the_category_of_affine_kgroups}{}\subsubsection*{{6. the category of affine k-groups}}\label{6_the_category_of_affine_kgroups} [[II.6, the category of affine k-groups]] From now on `'$k$-group'` will mean by default `'commutative $k$-group'` and the field $k$ will be of characteristic $p\gt 0$. The case $p=0$ is rather trivial. \hypertarget{7_tale_and_connected_formal_kgroups}{}\subsubsection*{{7. \'e{}tale and connected formal k-groups}}\label{7_tale_and_connected_formal_kgroups} [[II.7, étale and connected formal k-groups]] \hypertarget{8_multiplicative_affine_groups}{}\subsubsection*{{8. multiplicative affine groups}}\label{8_multiplicative_affine_groups} [[II.8, multiplicative affine groups]], [[diagonalizable group scheme]] \hypertarget{9_unipotent_affine_groups_decomposition_of_affine_groups}{}\subsubsection*{{9. unipotent affine groups, decomposition of affine groups}}\label{9_unipotent_affine_groups_decomposition_of_affine_groups} [[II.9, unipotent affine groups, decomposition of affine groups]] \hypertarget{10_smooth_formal_groups}{}\subsubsection*{{10. smooth formal groups}}\label{10_smooth_formal_groups} [[II.10, smooth formal groups]] \hypertarget{11_pdivisible_formal_groups}{}\subsubsection*{{11. p-divisible formal groups}}\label{11_pdivisible_formal_groups} [[II.11, p-divisible formal groups]] \hypertarget{12_appendix}{}\subsubsection*{{12 appendix}}\label{12_appendix} [[II.12, appendix]] \hypertarget{chapter_iii_witt_groups_and_dieudonn_modules}{}\subsection*{{chapter III: Witt groups and Dieudonn\'e{} modules}}\label{chapter_iii_witt_groups_and_dieudonn_modules} \hypertarget{1_the_artinhasse_exponential_series}{}\subsubsection*{{1. the Artin-Hasse exponential series}}\label{1_the_artinhasse_exponential_series} [[III.1 the Artin-Hasse exponential series]] \hypertarget{2_the_witt_rings_over_}{}\subsubsection*{{2. the Witt rings over $\mathbb{Z}$}}\label{2_the_witt_rings_over_} [[III.2, the Witt rings over Z]] \hypertarget{3_the_witt_rings_over_}{}\subsubsection*{{3. the Witt rings over $k$}}\label{3_the_witt_rings_over_} [[III.3, the Witt rings over k]] \hypertarget{4_duality_of_finite_witt_groups}{}\subsubsection*{{4. duality of finite Witt groups}}\label{4_duality_of_finite_witt_groups} [[III.4, duality of finite Witt groups]] \hypertarget{5_dieudonn_modules_affine_unipotent_groups}{}\subsubsection*{{5. Dieudonn\'e{} modules (affine unipotent groups)}}\label{5_dieudonn_modules_affine_unipotent_groups} [[III.5, Dieudonné modules (affine unipotent groups)]] \hypertarget{6_dieudonn_modules_torsion_finite_groups}{}\subsubsection*{{6. Dieudonn\'e{} modules ($p$-torsion finite $k$-groups)}}\label{6_dieudonn_modules_torsion_finite_groups} [[III.6, Dieudonné modules (p-torsion finite k-groups)]] \hypertarget{8_dieudonne_modules_pdivisible_groups}{}\subsubsection*{{8. Dieudonne modules (p-divisible groups)}}\label{8_dieudonne_modules_pdivisible_groups} [[III.8, Dieudonné modules (p-divisible groups)]] \hypertarget{9_dieudonn_modules_connected_formal_groups_of_finite_type}{}\subsubsection*{{9. Dieudonn\'e{} modules (connected formal groups of finite type)}}\label{9_dieudonn_modules_connected_formal_groups_of_finite_type} [[III.9, Dieudonné modules (connected formal groups of finite type)]] \hypertarget{chapter_iv_classification_of__divisible_groups}{}\subsection*{{chapter IV: classification of $p$ divisible groups}}\label{chapter_iv_classification_of__divisible_groups} Unless otherwise stated let $k$ be a perfect field of prime characteristic. We denote write $B(K):=Quot(W(k))$ for the [[quotient field]] of the [[Witt ring]] $W(k)$. We extend the [[Frobenius morphism]] $x\mapsto x^{(p)}$ to an automorphism of $B(k)$. The set of fixed points of $x\mapsto x^{(p)}$ in $W(k)$ is $W(F_p)=\mathbb{Z}_p$. The set of fixed points of $x\mapsto x^{(p)}$ in $B(k)$ is $B(F_p)=\mathbb{Q}_p$. \hypertarget{1_isogenies}{}\subsubsection*{{1. isogenies}}\label{1_isogenies} [[Demazure, lectures on p-divisible groups, IV.1, isogenies]] \hypertarget{2_the_category_of_spaces}{}\subsubsection*{{2. the category of $F$-spaces}}\label{2_the_category_of_spaces} [[Demazure, lectures on p-divisible groups, IV.2, the category of F-spaces]] \hypertarget{3_the_spaces__}{}\subsubsection*{{3. the spaces $E^\lambda$, $\lambda \ge 0$}}\label{3_the_spaces__} [[Demazure, lectures on p-divisible groups, IV.3, the spaces E{\tt \symbol{94}}lambda, lambda $\backslash$ge 0]] \hypertarget{4_classificaton_of_spaces_over_an_algebraically_closed_field}{}\subsubsection*{{4. classificaton of $F$-spaces over an algebraically closed field}}\label{4_classificaton_of_spaces_over_an_algebraically_closed_field} [[Demazure, lectures on p-divisible groups, IV.4, classificaton of F-spaces over an algebraically closed field]] \hypertarget{5_slopes}{}\subsubsection*{{5. slopes}}\label{5_slopes} [[Demazure, lectures on p-divisible groups, IV.5, slopes]] \hypertarget{6_the_characteristic_class_of_an_endomorphism}{}\subsubsection*{{6. the characteristic class of an endomorphism}}\label{6_the_characteristic_class_of_an_endomorphism} [[Demazure, lectures on p-divisible groups, IV.6, the characteristic class of an endomorphism]] \hypertarget{7_specialization_of_divisible_groups}{}\subsubsection*{{7. specialization of $p$-divisible groups}}\label{7_specialization_of_divisible_groups} [[Demazure, lectures on p-divisible groups, IV.7, specialization of p-divisible groups]] \hypertarget{8_some_particular_cases}{}\subsubsection*{{8. some particular cases}}\label{8_some_particular_cases} [[Demazure, lectures on p-divisible groups, IV.8, some particular cases]] \hypertarget{chapter_v_adic_cohomology_of_abelian_varieties}{}\subsection*{{chapter V: $p$-adic cohomology of abelian varieties}}\label{chapter_v_adic_cohomology_of_abelian_varieties} \hypertarget{1_abelian_varieties_known_facts}{}\subsubsection*{{1. abelian varieties, known facts}}\label{1_abelian_varieties_known_facts} [[Demazure, lectures on p-divisible groups, V.1, abelian varieties, known facts]] \hypertarget{2_points_of_finite_order_and_endomorphisms}{}\subsubsection*{{2. points of finite order and endomorphisms}}\label{2_points_of_finite_order_and_endomorphisms} [[Demazure, lectures on p-divisible groups, V.2, points of finite order and endomorphisms]] \hypertarget{3_structure_of_the_divisible_group_}{}\subsubsection*{{3. structure of the $p$-divisible group $A(p)$}}\label{3_structure_of_the_divisible_group_} [[Demazure, lectures on p-divisible groups, V.3, structure of the p-divisible group A(p)]] \hypertarget{related_nlab_entries}{}\subsection*{{Related nlab entries}}\label{related_nlab_entries} [[relations of certain classes of group schemes]] \end{document}