\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{Demazure, lectures on p-divisible groups, II.11, p-divisible formal groups} [[!redirects II.11, p-divisible formal groups]] This entry is about a section of the text \begin{itemize}% \item Michel [[Demazure, lectures on p-divisible groups]], \href{http://sites.google.com/site/mtnpdivisblegroupsworkshop/lecture-notes-on-p-divisible-groups}{web} \end{itemize} Let $k$ be a field of prime characteristic $p\gt 0$. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} \begin{defn} \label{}\hypertarget{}{} ($p$-divisible group) \begin{description} \item[A commutative formal $k$-group $G$ is called \emph{[[p-divisible group|p-divisible formal k-group]]} or \emph{Barsotti-Tate group} if it satisfies the following properties:] (pdg1) $p\cdot id_G\to G$ is an epimorphism. (pdg2) $G$ is a $p$-torsion group in that $G=\cup_j ker(p^j \cdot id_G)$ (pdg3) $ker(p\cdot id_G)$ is finite. \end{description} We have $rk(ker \,p \cdot id_G)=p^h$, $h\in \mathbb{N}$. This $h$ is called the \emph{height $ht(G)$ of $G$}. \end{defn} \begin{rem} \label{}\hypertarget{}{} (alternative definition of $p$-divisible group) Let \begin{displaymath} G_1\stackrel{i_1}{\to}G_2\stackrel{i_2}{\to}G_3\stackrel{i_3}{\to}\cdots \end{displaymath} be a codirected diagram of [[finite k-group|finite k-groups]] such that \begin{enumerate}% \item $rk(G_j)=p^{h j}$, $h$ a fixed integer, \item all sequences $0\stackrel{}{\to}G_j\stackrel{i_j}{\to}G_{j+1}\stackrel{p^j}{\to}G^{j+1}$ are exact. \end{enumerate} Then $colim_n G_n$ is a $p$-divisible group of height $h$ and $ker(p^n id_G:G\to G)\simeq G_n$. \end{rem} \begin{remark} \label{}\hypertarget{}{} If $G$ is a p-divisible group in the sense of the first definition, from (pdg1) follows $rk(ker p^j \cdot id_G)0p^{j\cdot ht (G)}$. Since $rk$ is multiplicative \begin{displaymath} 0\to ker \,p^j\hookrightarrow ker \,p^{j+k}\stackrel{p^j}{\to}ker\, p^k\to 0 \end{displaymath} is exact. \end{remark} \begin{defn} \label{}\hypertarget{}{} ([[Serre dual]] of a $p$-divisible group) Let $G$ be a $p$-divisible group $G$. The \emph{Serre dual} $G^\prime$ of $G$ is defined by: let $G_j:=ker(p^j id_G)$ and let $p_j:G_{j+1}\to G_j$ is the map induced by $p id_G$. Then we define \begin{displaymath} G_j^\prime:=D(G_j) \end{displaymath} \begin{displaymath} i_j^\prime:=D(p_j):G^\prime_j\to G^\prime_{j+1} \end{displaymath} \begin{displaymath} G^\prime:=colim_{j^\prime}G_j^\prime \end{displaymath} This is a $p$-divisible formal group with $ht(G^\prime)=ht(G)$ and we have $p_j^\prime=D(i_j)$ and $(G^\prime)^\prime\simeq G$. \end{defn} \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \begin{example} \label{}\hypertarget{}{} Let $\mathbb{Z}_p$ denote the [[p-adic number|ring of p-adic integers]], let $\mathbb{Q}_p$ denote the [[p-adic number|field of p-adic numbers]]. The constant formal group $(\mathbb{Q}_p /\mathbb{Z}_p)_k$ is a $p$-divisible group of height $1$. Conversely any $p$-divisible group of height $h$ is isomorphic to $(\mathbb{Q}_p /\mathbb{Z}_p)^h_k$. \end{example} \begin{example} \label{}\hypertarget{}{} Let $A$ be a commutative [[algebraic group|algebraic k-group]], such that $p id_G:A\to A$ is an epimorphism. Then \begin{enumerate}% \item $ker(p\cdot id_A)$ is finite. \item $A(p):=\cup_j ker(p^j id_A)$ is a $p$-divisible group containing $\hat A^\circ=\cup_j ker(F^j G)$. \item If $A=\mu_k$ we have $A(p)=\cup_j p^j \mu_k=(\mathbb{Q}_p /\mathbb{Z}_p)^\prime_k$. \item If $A$ is an abelian variety of dimension $g$ $p id_A$ is an epimorphism with $rk(her p id_G)=p^{2g}$ and consequently $A(p)$ is a $p$-divisible group of height $2g$. This example is further described in chapter [[V, p-adic cohomology of abelian varieties]], particularly in [[V.3, structure of the p-divisible group A(p)]]. \end{enumerate} \end{example} \begin{prop} \label{}\hypertarget{}{} Let $G$ be a $k$-formal group. Then $G$ is $p$-divisible iff the following conditions hold: \begin{enumerate}% \item $\pi_\circ(G)(\overline k)\simeq (\mathbb{Q}_p /\mathbb{Z}_p)^r$, $r$ finite. \item $G^\circ$ is of finite type, smooth, and $ker(V:G^{\circ (p)}\to G^\circ)$ is finite. \end{enumerate} \end{prop} \begin{example} \label{}\hypertarget{}{} Let $A$ be an algebraic unipotent $k$-group, then $\hat A^\circ$ is never $p$-divisible unless $A$ is finite. \end{example} \begin{remark} \label{}\hypertarget{}{} Let $G$ be $p$-divisible. Then we have $height(G)=dim(G)+dim(G^\prime)$ \end{remark} \begin{prop} \label{}\hypertarget{}{} Let $G$ be a connected, finite type, smooth formal group. There exist two subgroups $H$,K$\backslash$subseteq G$with$H$is$p$-divisible,$p{\tt \symbol{94}}n K = 0$for large$n$,$H$\backslash$cap K$is finite, and$G=H+ K\$. \end{prop} \end{document}