\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{Demazure, lectures on p-divisible groups, III.5, Dieudonné modules (affine unipotent groups)} [[!redirects III.5, Dieudonné modules (affine unipotent groups)]] This entry is about a section of the text \begin{itemize}% \item Michel [[Demazure, lectures on p-divisible groups]], \href{http://sites.google.com/site/mtnpdivisblegroupsworkshop/lecture-notes-on-p-divisible-groups}{web} \end{itemize} Let $k$ be a perfect field of prime characteristic $p$. \begin{defn} \label{}\hypertarget{}{} Let $\underline W$ denote the codirected system of [[unipotent k-group|affine commutative unipotent]] $Acu_k$ $k$-groups \begin{displaymath} W_{1k}\stackrel{T}{\to}W_{2k}\stackrel{T}{\to}W_{3k}\stackrel{T}{\to}\cdots \end{displaymath} The [[Witt vectors|Witt ring]] $W(k)$ operates on $\underline W$ as follows: Let $\sigma$ denote the Frobenius morphism $W(k)\to W(k)$, let $a\mapsto a^{(p^n)}$. This Frobenius is bijective since $k$ is perfect. Let $a\in W(k)$, let $w\in W_n(R)$, $R\in M_k$. We define \begin{displaymath} a * w:=a^{p^{1-n}} R\cdot w \end{displaymath} where $a^{p^{1-n} }R$ is the image of $a^{(p^{-n})}$ in $W(R)$, and $b\cdot w\in W_n(R)$, the product of $b\in W(R)$ and $w\in W_n(R)=W(R)/T^n W(R)$. By this definition $W_n(R)$ becomes a $W(k)$-module, and $T:W_n(R)\to W_{n+1}(R)$ is a homomorphism of $W(k)$-modules since we have \begin{displaymath} T(a* w)= T(a^{(p^{1-n)}} R\cdot w)=T(F(a^{(p^{-n})})R)\cdot w)=a^{p^{-n}}\cdot T w=a * Tw \end{displaymath} For any $G\in Ac u_k$ the \textbf{[[Dieudonné module]] $M(G)$ of $G$ is defined to be the $W(k)$-module} \begin{displaymath} M(G)=colim_n Acu_k(G,W_{nk}) \end{displaymath} or- equivalently- $M(G)=codir(Acu_k)(G,\underline W)$ where $codir(Acu_k)$ denotes the category of codirected diagrams in $Acu_k$ as described above. \begin{displaymath} M:\begin{cases} Acu_k&\to& W(k)-Mod \\ G&\mapsto&M(G) \end{cases} \end{displaymath} is a contravariant functor from affine commutative unipotent $k$-groups to the category of $W(k)$-modules. This construction commutes with automorphisms of $k$. In particular it commutes with the morphism $f_k:k\to k$. \end{defn} \begin{defn} \label{}\hypertarget{}{} \begin{enumerate}% \item For a $W(k)$-module $M$, define $M^{(p)}:=M\otimes_{W(k),\sigma}W(k)$. \item As a group $M^{(p)}=M$, but the external law is $(w,m)\mapsto w^{(p^{-1})}m$. \item If $f\in Acu_k(G,W_{nk})$, then $f^{(p)}:G^{(p)}\to W^{(p)}_{nk}=W_{nk}$ is a morphism and hence a map $\begin{cases}M(G)\to M(G^{(p)})\\f\mapsto f^{(p)}\end{cases}$ \item (\ldots{}) There is an isomorphism $M(G)^{(p)}\stackrel{\sim}{\to}M(G)^{(p)}$. \item The Frobenius morphism and the Verschiebung morphisminduce morphisms of $W(k)$ modules. $F:=M(F_G):M(G)^{(p)}\to M(G)$ and $V:=M(V_G):M(G)\to M(G)^{(p)}$. \item The translation morphism $T:W_{nk}\to W_{(n+1)k}$ is a monomorphism and the maps $Acu_k(G,W_{nk})\to Acu_k(G,W_{(n+1)k})$ are injective. \item $Acu_k(G,W_{nk})$ can be identified with a submodule of $M(G)$, namely $Acu_k(G,W_{nk})=\{m\in M(G),V^n m=0\}$ and we say that an element of $M(G)$ is killed by a power of $V$. \end{enumerate} \end{defn} \begin{defn} \label{}\hypertarget{}{} Let $D_k$ be the (non-commutative) ring generated by $W(k)$ and two elements $F$ and $V$ subject to the relations \begin{displaymath} Fw=w^{(p)} F \end{displaymath} \begin{displaymath} w^{(p)}V=V w \end{displaymath} \begin{displaymath} FV=VF=p \end{displaymath} Any element of $D_k$ can be written uniquely as a finite sum \begin{displaymath} \Sigma_{i\gt 0}a_{-i}V^i + a_0 + \Sigma_{i\gt 0}a_i F^i \end{displaymath} If $G\in Acu_k$, then $M(G)$ has a canonical structure of a left $D_k$-module. If $K$ is a perfect extension of $k$, then there is a canonical map of $D_k$-modules \begin{displaymath} W(K)\otimes_{W(k)}M(G)\to M(G \otimes_k K) \end{displaymath} Note that $D_K\simeq W(K)\otimes_{W(k)} D_k$ and the left hand side can also be written $D_K\otimes_{D_k}M(G)$. \end{defn} \begin{theorem} \label{}\hypertarget{}{} The functor $M$ induces an (contravariant) equivalence \begin{displaymath} Acu_k\to Tor_V D_k Mod \end{displaymath} between $Acu_k$ and the category of all $D_k$-modules of $V$-torsion. For any perfect extension $K$ $\backslash$of $k$ we have that \begin{displaymath} W(K)\otimes_{W(k)}M(G)\to M(G \otimes_k K) \end{displaymath} is an isomorphism. Moreover \begin{enumerate}% \item $G$ is algebraic iff $M(G)$ is a finitely generated $D_k$-module. \item $G$ is finite iff $M(G)$ is a $W(k)$-module of finite length. \end{enumerate} \end{theorem} \end{document}