\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{Demazure, lectures on p-divisible groups, III.6, Dieudonné modules (p-torsion finite k-groups)} [[!redirects III.6, Dieudonné modules (p-torsion finite k-groups)]] This entry is about a section of the text \begin{itemize}% \item Michel [[Demazure, lectures on p-divisible groups]], \href{http://sites.google.com/site/mtnpdivisblegroupsworkshop/lecture-notes-on-p-divisible-groups}{web} \end{itemize} Recall from [[relation of certain classes of k-groups]] the following: \begin{enumerate}% \item $Feu_k$ denotes the category of formal \'e{}tale unipotent affine $k$-groups. \item $Fiu_k$ denotes the category of formal infinitesimal unipotent $k$-groups. \item $W(k)$ denotes the Witt ring over $k$. \item For $D_k$ see [[D\_k-module]] in [[III.5, Dieudonné modules (affine unipotent groups) ]]. \item \begin{displaymath} M:\begin{cases} Acu_k&\to& W(k)-Mod \\ G&\mapsto&M(G) \end{cases} \end{displaymath} \end{enumerate} is a contravariant functor from affine commutative unipotent $k$-groups to the category of $W(k)$-modules. Recall moreover from [[III.5, Dieudonné modules (affine unipotent groups) ]] that $Tor_V D_k-Mod:=Acu_k(G,W_{nk})=\{m\in M(G)|V^n m =0\}$ is a submodule. which are $W(k)$-modules of finite length, killed by a power of $V$, Definition [[Verschiebung morphism]], and on which $F$, Definition [[Frobenius morphism]], is bijective (resp. and killed by a power of $F$). \begin{prop} \label{}\hypertarget{}{} (formulation of the statement is unclear) The functor \begin{displaymath} M:\begin{cases} Acu_k&\to& W(k)-Mod \\ G&\mapsto&M(G) \end{cases} \end{displaymath} which is a contravariant functor from affine commutative unipotent $k$-groups to the category of $W(k)$-modules induces the following contravariant equivalences of categories: \begin{enumerate}% \item $Feu_k\to Tor_V D_k-Mod\hookrightarrow M(G)$ between the category of affine \'e{}tale unipotent $k$-groups to the category of $W_k$-modules of finite length, killed by a power of $V$ on which $F$ is bijective. \item $Fiu_k\to Tor_F D_k-Mod\hookrightarrow M(G)$ between the category of affine \'e{}tale unipotent $k$-groups to the category of $W_k$-modules of finite length, killed by a power of $F$ (and killed by a power of $V$ ?)on which $F$ is bijective. \end{enumerate} (\hyperlink{lecturesOnPDivGroups}{Demazure p.69}) \end{prop} \begin{proof} This follows from the theorem, and the fact that if $G$ is finite, then G is \'e{}tale (resp, infinitesimal) if and only if $F_G$ is an isomorphism (resp. $F_G^n = 0$ for large $n$). \end{proof} \begin{example} \label{}\hypertarget{}{} \begin{enumerate}% \item If $G=(\mathbb{Z}/p\mathbb{Z})_k\in Feu_k$, then $M(G)=k$ with $F=1$, $V=0$. \item If $G=p \alpha_k\in Fiu_k$, then $M(G)=k$ with $F=0$, $V=0$. \end{enumerate} \end{example} \begin{cor} \label{}\hypertarget{}{} For $G\in Feu_k$ or $G\in Fiu_k$, we have \begin{displaymath} rk(G)= p^{length(M(G)) \end{displaymath} \end{cor} \begin{prop} \label{}\hypertarget{}{} Let $m,n$ be two positive integers. Then \begin{enumerate}% \item The canonical injection $m^{W_n}\to W_n$ defines an element $u\in M(m^{W_n})$ satisfying $V^n u= F^n= 0$. This gives a map \end{enumerate} \begin{displaymath} \lambda_{n,m}: D_k/(D_k F^m + D V^n)\to M(m^W_n) \end{displaymath} which is bijective. \end{prop} \begin{theorem} \label{}\hypertarget{}{} There is an isomorphism \begin{displaymath} M(D(G))\to M(G)^* \end{displaymath} In prose this means that the autoduality $G\mapsto D(G)$ of $Fiu_k$ corresponds via the Dieudonn\'e{}-functor $M$ to the autoduality $M\to M^*$ in the category $fin Tor_{V,F}D_k-Mod$ of $D_k$-modules of finite length killed by a power of $V$ and $F$. \end{theorem} \begin{defn} \label{}\hypertarget{}{} (Dieudonn\'e{}-module of an infinitesimal multiplicative $k$-group) Let $G\in Fim_k$. Then the \emph{Dieudonn\'e{}-module of $M(G)*$ is defined by} \begin{displaymath} M(G)=M(D(G))^* \end{displaymath} It follows by the [[Cartier duality]] between $Fim_k$ and $Feu_k$ that the functor $G\mapsto M(G)$ induces a contravariant equivalence \begin{displaymath} Fim_k\to fin Tor_F Bij_V D_k-Mod \end{displaymath} between $Fim_k$ and the category of all $D_k$-modules of finite length on which $F$ is nilpotent and $V$ is bijective. \end{defn} \begin{remark} \label{}\hypertarget{}{} Let $G\in Fimd_k$ (i.e. $G\in Fim_k$ and $G$ diagonalizable). $G=D(\Gamma_k)$. Then $D(G)\simeq \Gamma_k$, and $M(D(G))=colim Acu_k(\Gamma_k,W_{nk})=colimGr(\Gamma,W_n(k))=Gr(\Gamma,W_\infty)=Mod_{W(k)}(W(k)\otimes_\mathbb{Z},W_\infty)=Mod_{W(k)}(W(k)\otimes_\mathbb{Z} \Gamma, W_\infty)$ and hence \begin{displaymath} M(G)\simeq(W(\overline k)\otimes_\mathbb{Z}\Gamma)^\pi \end{displaymath} where $W_\infty=Quot(W(k))/W(k)=colim_n W_n(k)=\underline W(k)$, see p.66. For $F$ and $V$ we have \begin{displaymath} F(\lambda \otimes \chi)=\lambda^{(p)}\otimes p\chi \end{displaymath} \begin{displaymath} V(\lambda \otimes \chi)=\lambda^{(p^{-1})}\otimes p\chi \end{displaymath} \end{remark} \begin{theorem} \label{}\hypertarget{}{} a) The Dieudonn\'e{} functor \begin{displaymath} \begin{cases} F_p_k=Fiu_k\times Feu_k\times Fim_k\to (fin W(k)-Mod,F,V) \\ G\to M(G) \end{cases} \end{displaymath} is a contravariant equivalence between all finite $k$-groups of $p$-torsion, and the category of all triples $(M,F_M,V_M)$ where $M$ is a finite length $W(k)$-module and $F_M$, $V_M$ two group endomorphisms of $M$ satisfying \begin{displaymath} F_M(\lambda m)=\lambda^{(p)} F_M(m) \end{displaymath} \begin{displaymath} V_M(\lambda^{(p)}m)=\lambda V_M(m) \end{displaymath} \begin{displaymath} F_M V_M=V_M F_M=p\cdot id_M \end{displaymath} b) $G$ is \'e{}tale, infinitesimal, unipotent or multiplicative according as $F_M$ is isomorphic, $F_M$ is nilpotent, $V_M$ is nilpotent, or $V_M$ is isomorphic c) For any $G\in Fp_k$ we have $rk(G)=p^{length M(G)}$. d) If $k$ is a perfect extension of $k$, there exists a functorial isomorphism \begin{displaymath} M(D(G))=M(G)^* \end{displaymath} \end{theorem} \hypertarget{references}{}\subsection*{{References}}\label{references} Michel Demazure, lectures on p-divisible groups \href{http://sites.google.com/site/mtnpdivisblegroupsworkshop/lecture-notes-on-p-divisible-groups}{web} \end{document}