\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{Dijkgraaf-Witten theory} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{chernsimons_theory}{}\paragraph*{{$\infty$-Chern-Simons theory}}\label{chernsimons_theory} [[!include infinity-Chern-Simons theory - contents]] \hypertarget{quantum_field_theory}{}\paragraph*{{Quantum field theory}}\label{quantum_field_theory} [[!include functorial quantum field theory - contents]] \hypertarget{physics}{}\paragraph*{{Physics}}\label{physics} [[!include physicscontents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{concise_survey_of_the_ingredients}{Concise survey of the ingredients}\dotfill \pageref*{concise_survey_of_the_ingredients} \linebreak \noindent\hyperlink{gentle_exposition}{Gentle exposition}\dotfill \pageref*{gentle_exposition} \linebreak \noindent\hyperlink{details_of_dwtheory_as_an_extended_tqft}{Details of DW-theory as an extended TQFT}\dotfill \pageref*{details_of_dwtheory_as_an_extended_tqft} \linebreak \noindent\hyperlink{finite_group_cohomology}{Finite Group Cohomology}\dotfill \pageref*{finite_group_cohomology} \linebreak \noindent\hyperlink{StatesInCodimensionk}{The $k$-vector spaces of states in codimension $k$}\dotfill \pageref*{StatesInCodimensionk} \linebreak \noindent\hyperlink{relation_to_chernsimons_theory}{Relation to Chern-Simons theory}\dotfill \pageref*{relation_to_chernsimons_theory} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} \emph{Dijkgraaf-Witten theory} in dimension $n$ is the [[TFT|topological]] [[sigma-model]] [[quantum field theory]] whose [[target space]] is the [[classifying space]] of a [[discrete group]] and whose [[background gauge field]] is a [[circle n-bundle with connection]] on $\mathbf{B}G$ (necessarily flat) which is equivalently a [[cocycle]] in the [[group cohomology]] of $G$ with coefficients in the [[circle group]]. Viewed in a broader context and generalizing: Dijkgraaf-Witten theory is the [[schreiber:∞-Chern-Simons theory]] induced from a [[characteristic class]] $\mathbf{c} : \mathbf{B}G \to \mathbf{B}^n U(1)$ on a [[discrete ∞-groupoid]] $\mathbf{B}G := Disc B G$. If $G$ here is an ordinary [[discrete group]] this is traditional Dijkgraaf-Witten theory, if $G$ is a discrete [[2-group]] and the background field is a circle 4-bundle, then this is called the [[Yetter model]]. This are the first two steps in filtering of target spaces by [[homotopy type]] [[truncated|truncation]] of [[schreiber:∞-Chern-Simons theory]] . \hypertarget{concise_survey_of_the_ingredients}{}\subsubsection*{{Concise survey of the ingredients}}\label{concise_survey_of_the_ingredients} We may think of this as describing the [[quantum mechanics]] of an $(n-1)$-[[brane]] with $n$-dimensional [[worldvolume]] $\Sigma$ propagating on $B G$ and being [[charge]]d under a [[gauge field|higher analog]] of the [[electromagnetic field]]: a field configuration over $\Sigma$ (a $\Sigma$-shaped \emph{trajectory}) is a [[morphism]] $\phi : \Sigma \to \mathbf{B}G$, hence equivalently a $G$-[[principal bundle]] on $\Sigma$. The [[configuration space]] of fields over $\Sigma$ is the [[groupoid]] of $G$-[[principal bundle]]s over $\Sigma$. The [[background gauge field]] is a [[morphism]] $\alpha : \mathbf{B}G \to \mathbf{B}^n U(1)$ -- hence a [[characteristic class]] for $G$: a [[cocycle]] of degree $n$ in the [[group cohomology]] of $G$. The value of the [[Lagrangian]] $L(\phi)$ on a field configuration $\phi$ is the [[characteristic class]] of this bundle with respect to the universal characteristic class of the given [[principal infinity-bundle|circle n-bundle]]: \begin{displaymath} L : (\Sigma \stackrel{\phi}{\to} \mathbf{B}G) \mapsto (\alpha(\phi) : \Sigma \stackrel{\phi}{\to} \mathbf{B}G \stackrel{\alpha}{\to} \mathbf{B}^n U(1)). \end{displaymath} This is the [[classical field theory]] input of the model. The [[extended quantum field theory]] defined by this is supposed to be a rule that assigns space of [[state]]s to lower dimensional pieces of $\Sigma$ and to $n$-dimensional $\Sigma$s a propagator. The space of [[state]]s assigned to a $\Sigma$ of [[dimension]] $n-k$ for $k \in \mathbb{N}$ is the [[k-groupoid]] of [[section]]s of the higher line bundle [[associated infinity-bundle|associated]] to the [[circle n-bundle|circle (n-k)-bundle]] $\tau_\Sigma \alpha$ obtained by [[transgression]] of $\alpha$ to the [[mapping space]] $\mathbf{H}(\Sigma, \mathbf{B}G)$. The propagator on $\Sigma$ of dimension $n$ is given by the [[path integral]] computed with [[measure]] the [[groupoid cardinality]] of $\mathbf{B}G$ and [[integral kernel]] given by the [[action functional]] \begin{displaymath} \exp(i S(-)) : G Bund(\Sigma) \to U(1) \end{displaymath} that sends a field $\phi$ to the evaluation of $\alpha(\phi)$ on the [[fundamental class]] of $\Sigma$ \begin{displaymath} \exp(i S(\phi)) = \int_\Sigma \alpha(\phi) \,. \end{displaymath} \hypertarget{gentle_exposition}{}\subsubsection*{{Gentle exposition}}\label{gentle_exposition} (\ldots{}) \hypertarget{details_of_dwtheory_as_an_extended_tqft}{}\subsection*{{Details of DW-theory as an extended TQFT}}\label{details_of_dwtheory_as_an_extended_tqft} The Dijkgraaf-Witten model is an example of (fully) [[extended topological quantum field theory]]. Namely, the above data not only assign an element in $U(1)$ to any closed $n$-dimensional manifold, but also a vector space to any closed $(n-1)$-dimensional manifold, a [[2-vector space]] to any closed $(n-2)$ manifold, and so on, ending with an [[n-vector space]] assigned to the point. Also, manifolds with boundary corresponds to (higher) linear operators between these (higher) vector spaces. According to the [[cobordism hypothesis]], the whole structure of the Dijkgraaf-Witten model as an fully extended TQFT is contained in the datum of the $n$-Vector space it assigns to the point. This is the space of [[section|sections]] of the flat $n$-vector bundle $\mathbf{B}G\to n Vect$ induced by the background field $\mathbf{B}G\to \mathbf{B}^n U(1)$. \hypertarget{finite_group_cohomology}{}\subsubsection*{{Finite Group Cohomology}}\label{finite_group_cohomology} Since the target space of Dijkgraaf-Witten theory is the [[delooping]] groupoid $\mathbf{B}G$ of a [[group]] $G$ ([[internalization|internal]] to [[Set]]), any background field given by a morphism $\alpha : \mathbf{B}G \to A$ in [[∞Grpd]] is a [[cocycle]] in the [[group cohomology]] of $G$, as described there. Here we have a finite (or discrete) group $G$, and a discrete abelian group $A$, and we want to define $H^n(G;A)$. A way of doing this is to realize everything topologically: from $G$ we build the classifying space $\mathcal{B}G$, and from $A$ the [[Eilenberg-MacLane space]] $\mathcal{B}^n A=K(A,n)$. Then we consider the space of maps $hom(\mathcal{B}G,\mathcal{B}^n A)$ (these are our [[cocycle]]s) and take its $\pi_0$. This way we have a familiar description, in a certain sense (topological spaces, continuous maps, homotopies,..), of the set $H^n(G;A)$. The drawback is that the topological spaces involved here are ``gigantic'' (infinite dimensional [[CW-complex]]es), where we had started with a very ``little'' datum: a finite group. So one can wonder if there is a finite model for the above construction, and the homotopy hypothesis serves it on a silver plate. Namely, since $G$ is discrete, $\mathcal{B}G$ is a [[homotopy n-type|1-type]], and nothing but the [[geometric realization]] of the [[delooping]] [[groupoid]] $\mathbf{B}G$ (boldface $B$ here); similarly $\mathcal{B}^n A$ is the topological geometric realization of the $n$-groupoid $\mathbf{B}^n A$, and the space of cocycles is $hom(B G,B^n A)$. since $G$ is a finite group, $B G$ is a finite groupoid, and so $hom(B G,B^n A)$ is a finite set. This set is the finite model for $hom(\mathcal{B}G,\mathcal{B}^n A)$ we were looking for. To be continued\ldots{} \hypertarget{StatesInCodimensionk}{}\subsubsection*{{The $k$-vector spaces of states in codimension $k$}}\label{StatesInCodimensionk} The [[n-vector space|k-vector space]] associated with a closed oriented $(n-k)$-dimensional manifold $X_{n-k}$ admits a simple description in terms of [[section]]s: The background field $\alpha : \mathbf{B}G \to A$ is [[transgression|transgressed]] to the mapping space $[\Pi(X_{n-k}), \mathbf{B}G]$ by forming the [[internal hom]] \begin{displaymath} [\Pi(X_{n-k}), \mathbf{B}G] \stackrel{[\Pi(X_{n-k}), \alpha]}{\to} [\Pi(X_{n-k}), A] \stackrel{\tau_{\leq k}}{\to} \tau_{\leq k} [\Pi(X_{n-k}), A] \,, \end{displaymath} where the last morphism is the projection on the [[truncated|k-truncation]]. This defines a [[cocycle]] on the \emph{space of fields} $[\Pi(X_{n-k}), \mathbf{B}G]$ over $X_{n-k}$, which classifies some [[principal ∞-bundle]] on this space. Given a canonical [[representation]] of the \emph{spaces of phases} $\tau_k [\Pi(X_{n-k}), A]$ on a [[n-vector space|k-vector space]] we obtain the corresponding [[associated bundle]] over the space of fields. The $(k-1)$-category assigned by the [[extended topological quantum field theory]] to the closed $X_{n-k}$ is the category of sections of this $k$-vector bundle. \begin{prop} \label{}\hypertarget{}{} We have \begin{displaymath} \tau_k [\Pi(X_{n-k}), \mathbf{B}^n U(1)] \simeq \mathbf{B}^k U(1) \end{displaymath} \end{prop} \begin{proof} By general abstract reasoning (recalled at [[cohomology]] and [[fiber sequence]], for instance) we have for the [[homotopy group]]s that \begin{displaymath} \pi_i[\Pi(X_{n-k}),\mathbf{B}^n U(1)] \simeq H^{n-i}(X_{n-k}, U(1)) \,. \end{displaymath} Now use the [[universal coefficient theorem]], which asserts that we have an [[exact sequence]] \begin{displaymath} 0 \to Ext^1(H_{n-i-1}(X_{n-k},\mathbb{Z}),U(1)) \to H^{n-i}(X_{n-k},U(1)) \to Hom(H_{n-i}(X_{n-k},\mathbb{Z}),U(1)) \to 0 \,. \end{displaymath} Since $U(1)$ is an [[injective object|injective]] $\mathbb{Z}$-[[module]] we have \begin{displaymath} Ext^1(-,U(1))=0 \,. \end{displaymath} Together this means that we have an [[isomorphism]] \begin{displaymath} H^{n-i}(X_{n-k},U(1)) \simeq Hom_{Ab}(H_{n-i}(X_{n-k},\mathbb{Z}),U(1)) \end{displaymath} that identifies the [[cohomology group]] in question with the [[internal hom]] in [[Ab]] from the integral [[homology]] group of $X_{n-k}$ to $U(1)$. For $i\lt k$, the right hand side is zero, and so \begin{displaymath} \pi_i[\Pi(X_{n-k}),\mathbf{B}^n U(1)]=0 \;\;\;\; for i\lt k \,. \end{displaymath} For $i=k$, instead, $H_{n-i}(X_{n-k},\mathbb{Z})\simeq \mathbb{Z}$, since $X_{n-k}$ is a closed $(n-k)$-manifold and so \begin{displaymath} \pi_k[\Pi(X_{n-k}),\mathbf{B}^n U(1)]\simeq U(1) \,. \end{displaymath} \end{proof} \begin{prop} \label{}\hypertarget{}{} Another proof of the isomorphism $H^{n-k}(X_{n-k},U(1))\cong U(1)$ and of the identities $H^{n-i}(X_{n-k},U(1))=0$ for $i\lt k$ can be obtained as follows. Consider the short exact sequence of locally constant sheaves of abelian groups \begin{displaymath} 0\to \mathbb{Z}\to \mathbb{R}\to U(1)\to 1. \end{displaymath} This induces a long exact sequence in cohomology \begin{displaymath} \cdots \to H^{n-i-1}(X_{n-k},U(1))\to H^{n-i}(X_{n-k},\mathbb{Z})\to H^{n-i}(X_{n-k},\mathbb{R}) \to H^{n-i}(X_{n-k},U(1))\to H^{n-i+1}(X_{n-k},\mathbb{Z})\to \cdots \end{displaymath} For $i\lt k$ we have $H^{n-i}(X_{n-k},U(1))=0$ by dimensional reasons, while for $i=k$ we find the exact sequence \begin{displaymath} \cdots \to H^{n-k}(X_{n-k},\mathbb{Z})\to H^{n-k}(X_{n-k},\mathbb{R}) \to H^{n-k}(X_{n-k},U(1))\to 0. \end{displaymath} Since $X_{n-k}$ is a closed oriented manifold, we have $H^{n-k}(X_{n-k},\mathbb{Z})=\mathbb{Z}$, $H^{n-k}(X_{n-k},\mathbb{R})=\mathbb{R}$, and the map $H^{n-k}(X_{n-k},\mathbb{Z})\to H^{n-k}(X_{n-k},\mathbb{R})$ is the inclusion of $\mathbb{Z}$ into $\mathbb{R}$. Hence $H^{n-k}(X_{n-k},U(1))\cong \mathbb{R}/\mathbb{Z}\cong U(1)$. \end{prop} This means that the [[transgression]] of the Dijkgraaf-Witten background field \begin{displaymath} \alpha : \mathbf{B}G \to \mathbf{B}^n U(1) \end{displaymath} to the \emph{space of field configurations} $[\Pi(X_{n-k}), \mathbf{B}G]$ over $X_{n-k}$ is a [[cocycle]] of the form \begin{displaymath} [\Pi(X_{n-k}), \alpha] : [\Pi(X_{n-k}), \mathbf{B}G] \to \mathbf{B}^k U(1) \,. \end{displaymath} This classifies a $\mathbf{B}^{k-1} U(1)$-[[principal ∞-bundle]] $P$ over the space of field configurations, given by the [[pullback]] \begin{displaymath} \itexarray{ P &\to & \mathbf{E} \mathbf{B}^{k-1} U(1) \\ \downarrow && \downarrow \\ [\Pi(X_{n-k}), \mathbf{B}G] &\stackrel{[\Pi(X_{n-k}), \rho]}{\to}& \mathbf{B}^k U(1) } \,. \end{displaymath} (Here $\mathbf{E} \mathbf{B}^{k-1} U(1)$ is as described at [[universal principal ∞-bundle]].) By the canonical $k$-[[representation]] $\rho : \mathbf{B}^k U(1) \to k Vect_{\mathbb{C}}$ of $\mathbf{B}^{k-1}U(1)$ on complex [[n-vector space|k-vector space]]s, we have [[associated bundle|associated]] to this canonically a $k$-vector bundle $E$, which may be realized as the pullback \begin{displaymath} \itexarray{ E &\to & k Vect_* \\ \downarrow && \downarrow \\ [\Pi(X_{n-k}), \mathbf{B}G] &\stackrel{\rho \circ [\Pi(X_{n-k}), \rho]}{\to}& k Vect } \,. \end{displaymath} Here $k Vect_*$ is the [[n-category|k-category]] of pointed $k$-vector bundles, see again [[generalized universal bundle]] for more. If $X_{n-k}$ is closed then the $k$-vector spaces associated by the TFT to $X_{n-k}$ is the [[n-category|(k-1)-category]] of [[section]]s of this bundle $E$. \ldots{} \hypertarget{relation_to_chernsimons_theory}{}\subsection*{{Relation to Chern-Simons theory}}\label{relation_to_chernsimons_theory} Dijkgraaf-Witten theory is to be thought of as the finite group version of [[Chern-Simons theory]]. Chern-Simons theory looks formally just as the above, only that all finite $n$-groupoids appearing here are replaced by [[Lie ∞-groupoid]]s ([[∞-stack]]s on [[CartSp]]). \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[schreiber:∞-Chern-Simons theory]] \item [[higher dimensional Chern-Simons theory]] \begin{itemize}% \item [[1d Chern-Simons theory]] \begin{itemize}% \item [[1d Dijkgraaf-Witten theory]] \end{itemize} \item [[2d Chern-Simons theory]] \item [[3d Chern-Simons theory]] \begin{itemize}% \item \textbf{Dijkgraaf-Witten theory} \item [[2d Wess-Zumino-Witten theory]] \end{itemize} \item [[4d Chern-Simons theory]] \item [[5d Chern-Simons theory]] \item [[6d Chern-Simons theory]] \item [[7d Chern-Simons theory]] \item [[infinite-dimensional Chern-Simons theory]] \item [[AKSZ sigma-model]] \end{itemize} \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} The idea originates, of course, in \begin{itemize}% \item [[Robbert Dijkgraaf]], [[Edward Witten]], \emph{[[DW.pdf:file]]}, Commun. Math. Phys. \textbf{129} (1990), 393, \end{itemize} The discussion of the [[quasi-Hopf algebra]] associated with a [[group cohomology]] 3-[[cocycle]] $c \colon \mathbf{B}G \to \mathbf{B}^3 U(1)$ originates in \begin{itemize}% \item [[Robbert Dijkgraaf]], V. Pasquier, P. Roche, \emph{QuasiHopf algebras, group cohomology and orbifold models}, Nucl. Phys. B Proc. Suppl. \textbf{18B} (1990), 60-72; \emph{Quasi-quantum groups related to orbifold models}, Modern quantum field theory (Bombay, 1990), 375--383, World Sci. 1991 \end{itemize} A review is in \begin{itemize}% \item A. Coste, J-M. Maillard, \emph{Representation Theory of Twisted Group Double}, Annales Fond.Broglie 29 (2004) 681-694, (\href{http://arxiv.org/abs/hep-th/0309257}{arXiv:hep-th/0309257}) \end{itemize} and conceptual clarifications were established in \begin{itemize}% \item [[Simon Willerton]], \emph{The twisted Drinfeld double of a finite group via gerbes and finite groupoids}, \href{http://arxiv.org/abs/math.QA/0503266}{arXiv/math.QA/0503266} \end{itemize} and, earlier, in an unpublished manuscript of [[Paul Bressler]] (2002-2004). See at \emph{[[Drinfeld double]]} for more on this. A first comprehensive structural account of DW theory as a [[FQFT|functorial QFT]] was given in \begin{itemize}% \item [[Daniel Freed]], [[Frank Quinn]], \emph{Chern-Simons theory with finite gauge group} Commun.Math.Phys. \textbf{156}:435-472, 1993, (\href{http://de.arxiv.org/abs/hep-th/9111004}{arXiv:hep-th/9111004}) \end{itemize} A review is given on p. 68 of \begin{itemize}% \item [[Bruce Bartlett]], \emph{Categorical aspects of topological quantum field theory}, \href{http://de.arxiv.org/abs/math.QA/0512103}{arXiv/math.QA/0512103} \end{itemize} First steps towards understand DW theory as an [[extended TQFT]] appear in \begin{itemize}% \item [[Daniel Freed]], \emph{Higher Algebraic Structures and Quantization} Commun.Math.Phys. 159 (1994) 343-398 (\href{http://arxiv.org/abs/arXiv:hep-th/9212115}{arXiv:arXiv:hep-th/9212115}) \end{itemize} Discussion aiming towards a refinement of DW theory to an [[extended TQFT]] is in \begin{itemize}% \item Kevin Wray, \emph{Extended topological gauge theories in codimension 0 and higher} (\href{http://math.berkeley.edu/~kwray/papers/thesis.pdf}{pdf}) \end{itemize} Further conceptual refinement of this is indicated in section 3 and section 8 of \begin{itemize}% \item [[Dan Freed]], [[Mike Hopkins]], [[Jacob Lurie]], [[Constantin Teleman]], \emph{[[Topological Quantum Field Theories from Compact Lie Groups]]} (2010) \end{itemize} This proposes a general abstract way to construct [[path integral]] quantizations for finite group theories such as DW, see also at \emph{[[prequantum field theory]]}. More along these lines is in \begin{itemize}% \item [[Jacob Lurie]], \emph{Finiteness and ambidexterity in $K(n)$-local stable homotopy theory}, talk at \emph{Notre Dame Graduate Summer School on Topology and Field Theories} and \emph{Harvard lecture} 2012 (\href{http://www.youtube.com/watch?v=eQayYLDw1VA}{video part 1}, \href{http://www.youtube.com/watch?v=OEShrQyvmS4}{part 2}, \href{http://www.youtube.com/watch?v=nOIcdn1iUR4}{part 3} \href{http://www.youtube.com/watch?v=ZwnClYedaYM}{part 4}, \href{http://www.math.northwestern.edu/~celliott/notre_dame_notes/Lurie_notes.pdf}{pdf lecture notes} by Chris Elliott) \end{itemize} See also \begin{itemize}% \item [[Thomas Nikolaus]], \emph{Equivariant Dijkgraaf-Witten theory}, a talk at Muenster (\href{http://www.math.uni-hamburg.de/home/nikolaus/Muenster.pdf}{pdf}) \end{itemize} For more on this see the discussion on the \href{http://nforum.mathforge.org/discussion/1046/path-category-vs-cobordisms-for-bundles/?Focus=8337#Comment_8337}{n-Forum}. [[!redirects Dijkgraaf--Witten theory]] [[!redirects Dijkgraaf?Witten theory]] [[!redirects Dijkgraaf-Witten model]] [[!redirects Dijkgraaf-Witten models]] \end{document}