\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{Dirac charge quantization} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{physics}{}\paragraph*{{Physics}}\label{physics} [[!include physicscontents]] \hypertarget{chernweil_theory}{}\paragraph*{{$\infty$-Chern-Weil theory}}\label{chernweil_theory} [[!include infinity-Chern-Weil theory - contents]] \hypertarget{differential_cohomology}{}\paragraph*{{Differential cohomology}}\label{differential_cohomology} [[!include differential cohomology - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{for_monopole_charges_in_electromagnetism}{For monopole charges in electromagnetism}\dotfill \pageref*{for_monopole_charges_in_electromagnetism} \linebreak \noindent\hyperlink{for_monopole_charges_in_nonabelian_yangmills_theory}{For monopole charges in non-abelian Yang-Mills theory}\dotfill \pageref*{for_monopole_charges_in_nonabelian_yangmills_theory} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{reference}{Reference}\dotfill \pageref*{reference} \linebreak \noindent\hyperlink{for_the_electromagnetic_field}{For the electromagnetic field}\dotfill \pageref*{for_the_electromagnetic_field} \linebreak \noindent\hyperlink{for_the_weak_nuclear_force_field}{For the weak nuclear force field}\dotfill \pageref*{for_the_weak_nuclear_force_field} \linebreak \noindent\hyperlink{ReferencesForBFieldAndRRFields}{For the B-field and RR-field in string theory}\dotfill \pageref*{ReferencesForBFieldAndRRFields} \linebreak \noindent\hyperlink{for_the_cfield_in_mtheory}{For the C-field in M-theory}\dotfill \pageref*{for_the_cfield_in_mtheory} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} \hypertarget{for_monopole_charges_in_electromagnetism}{}\subsubsection*{{For monopole charges in electromagnetism}}\label{for_monopole_charges_in_electromagnetism} If the field of [[electromagnetism]] serves as a [[background gauge field]] for electrically charged [[quantum mechanics|quantum]] [[particles]] it is subject to a \emph{quantization condition}: Outside the locus of any [[magnetic charge]] -- for instance a magnetic [[monopole]] [[topological defect]] -- the [[electromagnetic field]] must be a [[circle bundle with connection|connection on a principal U(1) bundle]] whose [[first Chern class]] is the discrete measure for the units of magnetic charge. Equivalently this means that the [[electromagnetic field]] is a [[cocycle]] in [[ordinary differential cohomology]] of degree 2. In the underlying topological sector (``[[monopole]]''/``[[instantons]]''-sector) this is [[integral cohomology]] in degree-2, whose [[classifying space]] is euqivalently the [[infinite complex projective space]] $B U(1) \simeq \mathbb{C}P^\infty$: $\,$ This goes back to an insight due to \hyperlink{Dirac31}{Dirac 31}, See \hyperlink{Heras18}{Heras 18} for traditional elementary review. See \hyperlink{Frankel}{Frankel} and \hyperlink{MangiarottiSardanashvily00}{Mangiarotti-Sardanashvily 00} for exposition of the modern picture in terms of [[fiber bundles in physics]]. See \hyperlink{Freed00}{Freed 00, Section 2} for review in terms of [[differential cohomology]] with outlook to generalization to [[higher gauge fields]] in [[string theory]] (more on which in the references \hyperlink{ReferencesForBFieldAndRRFields}{below}). On the locus of the magnetic charge itself the situation is more complex. There the [[magnetic current]] is given by a cocycle in [[ordinary differential cohomology]] of degree 3 (with compact support) and now the electromagnetic field is a connection on a [[twisted bundle]] (\hyperlink{Freed00}{Freed 00, Section 2}). $\backslash$linebreak \hypertarget{for_monopole_charges_in_nonabelian_yangmills_theory}{}\subsubsection*{{For monopole charges in non-abelian Yang-Mills theory}}\label{for_monopole_charges_in_nonabelian_yangmills_theory} A similar charge quantization condition govers [[monopoles]] in [[SU(2)]]-[[Yang-Mills theory]], see at \emph{[[moduli space of monopoles]]}. Here the [[Atiyah-Hitchin charge quantization]] (\hyperlink{AtiyahHitchin88}{Atiyah-Hitchin 88, Theorem 2.10}) says that the [[moduli space]] of [[monopoles]] is the [[holomorphic function|complex]]-[[rational function|rational]] 2-[[Cohomotopy]] of an asymptotic 2-sphere enclosing the monopoles: $\,$ \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[monopole]] \begin{itemize}% \item [[Dirac monopole]], [[Yang monopole]] \end{itemize} \item [[moduli space of monopoles]] \end{itemize} $\backslash$linebreak $\backslash$linebreak For more, see eventuall at \emph{\href{electromagnetic+field#DiracArgument}{electromagnetic field -- charge quantization}} (but still needs to be written\ldots{}) \hypertarget{reference}{}\subsection*{{Reference}}\label{reference} \hypertarget{for_the_electromagnetic_field}{}\subsubsection*{{For the electromagnetic field}}\label{for_the_electromagnetic_field} The original argument for charge quantization of the [[electromagnetic field]] is due to \begin{itemize}% \item [[P.A.M. Dirac]], \emph{Quantized Singularities in the Electromagnetic Field}, Proceedings of the Royal Society, A133 (1931) pp 60--72 (\href{http://rspa.royalsocietypublishing.org/content/133/821/60.short}{doi:10.1098/rspa.1931.0130}) \end{itemize} Review: \begin{itemize}% \item [[Theodore Frankel]], section 16.4e of \emph{[[The Geometry of Physics - An Introduction]]} (\href{https://doi.org/10.1017/CBO9781139061377}{doi:10.1017/CBO9781139061377}) \item \hyperlink{Freed00}{Freed 00, Section 2} \item L. Mangiarotti, [[Gennadi Sardanashvily]], \emph{Connections in Classical and Quantum Field Theory}, World Scientific, 2000 (\href{https://doi.org/10.1142/2524}{doi:10.1142/2524}) \item Ricardo Heras, \emph{Dirac quantisation condition: a comprehensive review}, Contemp. Phys. 59, 331 (2018) (\href{https://arxiv.org/abs/1810.13403}{arXiv:1810.13403}) \end{itemize} See also \begin{itemize}% \item Wikipedia, \emph{\href{https://en.wikipedia.org/wiki/Magnetic_monopole#Dirac%27s_quantization}{Dirac's quantization}} \end{itemize} \hypertarget{for_the_weak_nuclear_force_field}{}\subsubsection*{{For the weak nuclear force field}}\label{for_the_weak_nuclear_force_field} Discussion of the [[moduli space of monopoles]] for [[SU(2)]]-[[Yang-Mills theory]] ([[weak nuclear force]]): \begin{itemize}% \item [[Michael Atiyah]], [[Nigel Hitchin]], \emph{The geometry and dynamics of magnetic monopoles} M. B. Porter Lectures. Princeton University Press, Princeton, NJ, 1988 (\href{https://www.jstor.org/stable/j.ctt7zv206}{jstor:j.ctt7zv206}) \item [[Graeme Segal]], \emph{The topology of spaces of rational functions}, Acta Math. Volume 143 (1979), 39-72 (\href{https://projecteuclid.org/euclid.acta/1485890033}{euclid:1485890033}) \end{itemize} \hypertarget{ReferencesForBFieldAndRRFields}{}\subsubsection*{{For the B-field and RR-field in string theory}}\label{ReferencesForBFieldAndRRFields} Discussion in the broader context of the [[higher gauge fields]] in [[string theory]] ([[B-field]], [[RR-field]]) charge-quantized in [[generalized cohomology theories]] ([[twisted K-theory|twisted]] [[topological K-theory]]): \begin{itemize}% \item [[Daniel Freed]], \emph{[[Dirac charge quantization and generalized differential cohomology]]}, Surveys in Differential Geometry, Int. Press, Somerville, MA, 2000, pp. 129--194 (\href{http://arxiv.org/abs/hep-th/0011220}{arXiv:hep-th/0011220}) \end{itemize} For a comprehensive list of literature in this case see at \emph{\href{D-brane#ReferencesKTheoryDescription}{D-brane -- Charge quantization in K-theory}}. The idea that [[D-brane charge]] should be quantized in [[topological K-theory]] originates with these articles: \begin{itemize}% \item [[Ruben Minasian]], [[Gregory Moore]], \emph{K-theory and Ramond-Ramond charge}, JHEP9711:002,1997 (\href{http://arxiv.org/abs/hep-th/9710230}{arXiv:hep-th/9710230}) \item [[Edward Witten]], \emph{D-Branes And K-Theory}, JHEP 9812:019,1998 (\href{http://arxiv.org/abs/hep-th/9810188}{arXiv:hep-th/9810188}) \item [[Daniel Freed]], [[Michael Hopkins]], \emph{On Ramond-Ramond fields and K-theory}, JHEP 0005 (2000) 044 (\href{http://arxiv.org/abs/hep-th/0002027}{arXiv:hep-th/0002027}) \end{itemize} See also at \emph{[[anti-D-brane]]}. Discussion of full-blown [[twisted K-theory|twisted]] [[differential K-theory|differential]] [[topological K-theory|K-theory]] and its relation to [[D-brane charge]] in [[type II string theory]] \begin{itemize}% \item Daniel Grady, [[Hisham Sati]], \emph{Ramond-Ramond fields and twisted differential K-theory} (\href{https://arxiv.org/abs/1903.08843}{arXiv:1903.08843}) \end{itemize} Discussion of full-blown [[twisted K-theory|twisted]] [[differential K-theory|differential]] [[KO-theory|orthogonal]] [[topological K-theory|K-theory]] and its relation to [[D-brane charge]] in [[type I string theory]] (on [[orientifolds]]): \begin{itemize}% \item Daniel Grady, [[Hisham Sati]], \emph{Twisted differential KO-theory} (\href{https://arxiv.org/abs/1905.09085}{arXiv:1905.09085}) \end{itemize} But there remain conceptual issues with the proposal that D-brane charge is in K-theory, as highlighted for in \begin{itemize}% \item [[Jan de Boer]], [[Robbert Dijkgraaf]], [[Kentaro Hori]], [[Arjan Keurentjes]], [[John Morgan]], [[David Morrison]], [[Savdeep Sethi]], section 4.5 and 4.6.5 of \emph{Triples, Fluxes, and Strings}, Adv.Theor.Math.Phys. 4 (2002) 995-1186 (\href{https://arxiv.org/abs/hep-th/0103170}{arXiv:hep-th/0103170}) \item [[Jarah Evslin]], section 8 of \emph{What Does(n't) K-theory Classify?}, Second Modave Summer School in Mathematical Physics (\href{https://arxiv.org/abs/hep-th/0610328}{arXiv:hep-th/0610328}) \end{itemize} In particular, actual checks of the proposal that D-brane charge is given by K-theory, via concrete computation in [[boundary conformal field theory]], have revealed some subtleties: \begin{itemize}% \item [[Stefan Fredenhagen]], [[Thomas Quella]], \emph{Generalised permutation branes}, JHEP0511:004, 2005 (\href{https://arxiv.org/abs/hep-th/0509153}{arXiv:hep-th/0509153}) \begin{quote}% It might surprise that despite all the progress that has been made in understanding branes on group manifolds, there are usually not enough D-branes known to explain the whole charge group predicted by (twisted) K-theory. \end{quote} \end{itemize} Further review and discussion of D-brane charge in K-theory includes the following \begin{itemize}% \item Kasper Olsen, [[Richard Szabo]], \emph{Brane Descent Relations in K-theory}, Nucl.Phys. B566 (2000) 562-598 (\href{https://arxiv.org/abs/hep-th/9904153}{arXiv:hep-th/9904153}) \item Kasper Olsen, [[Richard Szabo]], \emph{Constructing D-Branes from K-Theory}, Adv.Theor.Math.Phys. 3 (1999) 889-1025 (\href{https://arxiv.org/abs/hep-th/9907140}{arXiv:hep-th/9907140}) \item [[John Schwarz]], \emph{TASI Lectures on Non-BPS D-Brane Systems} (\href{https://arxiv.org/abs/hep-th/9908144}{arXiv:hep-th/9908144}) \item [[Edward Witten]], \emph{Overview Of K-Theory Applied To Strings}, Int.J.Mod.Phys.A16:693-706,2001 (\href{https://arxiv.org/abs/hep-th/0007175}{arXiv:hep-th/0007175}) \item [[Greg Moore]], \emph{K-Theory from a physical perspective} (\href{http://arxiv.org/abs/hep-th/0304018}{arXiv:hep-th/0304018}) \item [[Juan José Manjarín]], \emph{Topics on D-brane charges with B-fields}, Int.J.Geom.Meth.Mod.Phys. 1 (2004) (\href{http://arxiv.org/abs/hep-th/0405074}{arXiv:hep-th/0405074}) \end{itemize} A textbook account of D-brane charge in ([[twisted K-theory|twisted]]) [[topological K-theory]] is \begin{itemize}% \item [[Dale Husemoeller]], [[Michael Joachim]], [[Branislav Jurco]], [[Martin Schottenloher]], \emph{[[Basic Bundle Theory and K-Cohomology Invariants]]}, Lecture Notes in Physics, Springer 2008 (\href{http://www.mathematik.uni-muenchen.de/~schotten/Texte/978-3-540-74955-4_Book_LNP726corr1.pdf}{pdf}) \end{itemize} See also for instance \begin{itemize}% \item [[Ilka Brunner]], [[Jacques Distler]], \emph{Torsion D-Branes in Nongeometrical Phases} (\href{https://arxiv.org/abs/hep-th/0102018}{arXiv:hep-th/0102018}) \end{itemize} Discussion of D-branes in [[KK-theory]] is reviewed in \begin{itemize}% \item [[Richard Szabo]], \emph{D-branes and bivariant K-theory}, Noncommutative Geometry and Physics 3 1 (2013): 131. (\href{http://arxiv.org/abs/0809.3029}{arXiv:0809.3029}) \end{itemize} based on \begin{itemize}% \item Rui Reis, [[Richard Szabo]], \emph{Geometric K-Homology of Flat D-Branes} ,Commun.Math.Phys. 266 (2006) 71-122 (\href{https://arxiv.org/abs/hep-th/0507043}{arXiv:hep-th/0507043}) \item [[Jacek Brodzki]], [[Varghese Mathai]], [[Jonathan Rosenberg]], [[Richard Szabo]], \emph{D-Branes, RR-Fields and Duality on Noncommutative Manifolds}, Commun. Math. Phys. 277:643-706,2008 (\href{http://arxiv.org/abs/hep-th/0607020}{arXiv:hep-th/0607020}) \item [[Jacek Brodzki]], [[Varghese Mathai]], [[Jonathan Rosenberg]], [[Richard Szabo]], \emph{Noncommutative correspondences, duality and D-branes in bivariant K-theory}, Adv. Theor. Math. Phys.13:497-552,2009 (\href{http://arxiv.org/abs/0708.2648}{arXiv:0708.2648}) \item [[Jacek Brodzki]], [[Varghese Mathai]], [[Jonathan Rosenberg]], [[Richard Szabo]], \emph{D-branes, KK-theory and duality on noncommutative spaces}, J. Phys. Conf. Ser. 103:012004,2008 (\href{http://arxiv.org/abs/0709.2128}{arXiv:0709.2128}) \end{itemize} In particular (\hyperlink{BMRS2}{BMRS2}) discusses the definition and construction of D-brane charge as a generalized [[index]] in [[KK-theory]]. The discussion there focuses on the untwisted case. Comments on the generalization of this to topologicall non-trivial [[B-field]] and hence [[twisted K-theory]] is in \begin{itemize}% \item [[Richard Szabo]], \emph{D-Branes, Tachyons and K-Homology}, Mod. Phys. Lett. A17 (2002) 2297-2316 (\href{http://arxiv.org/abs/hep-th/0209210}{arXiv:hep-th/0209210}) \end{itemize} Specifically for D-branes in [[WZW models]] see \begin{itemize}% \item [[Peter Bouwknegt]], \emph{A note on equality of algebraic and geometric D-brane charges in WZW models} (\href{http://people.physics.anu.edu.au/~drt105/papers/BR0312259.pdf}{pdf}) \end{itemize} More on this, with more explicit relation to [[noncommutative motives]], is in \begin{itemize}% \item [[Snigdhayan Mahanta]], \emph{Noncommutative correspondence categories, simplicial sets and pro $C^\ast$-algebras} (\href{http://arxiv.org/abs/0906.5400}{arXiv:0906.5400}) \item [[Snigdhayan Mahanta]], \emph{Higher nonunital Quillen $K'$-theory, KK-dualities and applications to topological $\mathbb{T}$-duality}, Journal of Geometry and Physics, Volume 61, Issue 5 2011, p. 875-889. (\href{http://wwwmath.uni-muenster.de/u/snigdhayan.mahanta/papers/KQ.pdf}{pdf}) \end{itemize} Discussion of D-brane [[matrix models]] taking these K-theoretic effects into account ([[K-matrix model]]) is in \begin{itemize}% \item T. Asakawa, S. Sugimoto, S. Terashima, \emph{D-branes, Matrix Theory and K-homology}, JHEP 0203 (2002) 034 (\href{https://arxiv.org/abs/hep-th/0108085}{arXiv:hep-th/0108085}) \end{itemize} The proposal that D-brane charge on [[orbifolds]] is measured in [[equivariant K-theory]] goes back to \begin{itemize}% \item \hyperlink{Witten98}{Witten 98, section 5.1} \end{itemize} but it was pointed out that only a subgroup of equivariant K-theory can be physically relevant in \begin{itemize}% \item [[Jan de Boer]], [[Robbert Dijkgraaf]], [[Kentaro Hori]], [[Arjan Keurentjes]], [[John Morgan]], [[David Morrison]], [[Savdeep Sethi]], around (137) of \emph{Triples, Fluxes, and Strings}, Adv.Theor.Math.Phys. 4 (2002) 995-1186 (\href{https://arxiv.org/abs/hep-th/0103170}{arXiv:hep-th/0103170}) \end{itemize} Further discussion of [[equivariant K-theory]] for D-branes on [[orbifolds]] includes the following: \begin{itemize}% \item Hugo García-Compeán, \emph{D-branes in orbifold singularities and equivariant K-theory}, Nucl.Phys. B557 (1999) 480-504 (\href{https://arxiv.org/abs/hep-th/9812226}{arXiv:hep-th/9812226}) \item [[Matthias Gaberdiel]], [[Bogdan Stefanski]], \emph{Dirichlet Branes on Orbifolds}, Nucl.Phys.B578:58-84, 2000 (\href{https://arxiv.org/abs/hep-th/9910109}{arXiv:hep-th/9910109}) \item [[Igor Kriz]], Leopoldo A. Pando Zayas, Norma Quiroz, \emph{Comments on D-branes on Orbifolds and K-theory}, Int.J.Mod.Phys.A23:933-974, 2008 (\href{https://arxiv.org/abs/hep-th/0703122}{arXiv:hep-th/0703122}) \item [[Richard Szabo]], [[Alessandro Valentino]], \emph{Ramond-Ramond Fields, Fractional Branes and Orbifold Differential K-Theory}, Commun.Math.Phys.294:647-702, 2010 (\href{https://arxiv.org/abs/0710.2773}{arXiv:0710.2773}) \end{itemize} Discussion of [[real K-theory]] for D-branes on [[orientifolds]] includes the following: The original observation that [[D-brane charge]] for [[orientifolds]] should be in [[KR-theory]] is due to \begin{itemize}% \item \hyperlink{Witten98}{Witten 98, section 5} \end{itemize} and was then re-amplified in \begin{itemize}% \item [[Sergei Gukov]], \emph{K-Theory, Reality, and Orientifolds}, Commun.Math.Phys. 210 (2000) 621-639 (\href{https://arxiv.org/abs/hep-th/9901042}{arXiv:hep-th/9901042}) \item [[Oren Bergman]], E. Gimon, [[Shigeki Sugimoto]], \emph{Orientifolds, RR Torsion, and K-theory}, JHEP 0105:047, 2001 (\href{https://arxiv.org/abs/hep-th/0103183}{arXiv:hep-th/0103183}) \end{itemize} With further developments in \begin{itemize}% \item [[Varghese Mathai]], [[Michael Murray]], [[Daniel Stevenson]], \emph{Type I D-branes in an H-flux and twisted KO-theory}, JHEP 0311 (2003) 053 (\href{https://arxiv.org/abs/hep-th/0310164}{arXiv:hep-th/0310164}) \end{itemize} Discussion of orbi-orienti-folds using [[equivariant K-theory|equivariant]] [[KO-theory]] is in \begin{itemize}% \item N. Quiroz, [[Bogdan Stefanski]], \emph{Dirichlet Branes on Orientifolds}, Phys.Rev. D66 (2002) 026002 (\href{https://arxiv.org/abs/hep-th/0110041}{arXiv:hep-th/0110041}) \item [[Volker Braun]], [[Bogdan Stefanski]], \emph{Orientifolds and K-theory} (\href{https://arxiv.org/abs/hep-th/0206158}{arXiv:hep-th/0206158}) \item H. Garcia-Compean, W. Herrera-Suarez, B. A. Itza-Ortiz, O. Loaiza-Brito, \emph{D-Branes in Orientifolds and Orbifolds and Kasparov KK-Theory}, JHEP 0812:007, 2008 (\href{https://arxiv.org/abs/0809.4238}{arXiv:0809.4238}) \end{itemize} An elaborate proposal for the correct flavour of real equivariant K-theory needed for [[orientifolds]] is sketched in \begin{itemize}% \item [[Jacques Distler]], [[Dan Freed]], [[Greg Moore]], \emph{Orientifold Pr\'e{}cis} in: [[Hisham Sati]], [[Urs Schreiber]] (eds.) \emph{[[schreiber:Mathematical Foundations of Quantum Field and Perturbative String Theory]]} Proceedings of Symposia in Pure Mathematics, AMS (2011) (\href{http://arxiv.org/abs/0906.0795}{arXiv:0906.0795}, \href{http://www.ma.utexas.edu/users/dafr/bilbao.pdf}{slides}) \end{itemize} Discussion of the alleged K-theory classification of D-brane charge in relation to the [[M-theory]] [[supergravity C-field]] is in \begin{itemize}% \item D. Diaconescu, [[Gregory Moore]], [[Edward Witten]], \emph{$E_8$ Gauge Theory, and a Derivation of K-Theory from M-Theory}, Adv.Theor.Math.Phys.6:1031-1134,2003 (\href{http://arxiv.org/abs/hep-th/0005090}{arXiv:hep-th/0005090}), summarised in \emph{A Derivation of K-Theory from M-Theory} (\href{http://arxiv.org/abs/hep-th/0005091}{arXiv:hep-th/0005091}) \end{itemize} See also \begin{itemize}% \item Inaki Garcia-Etxebarria, [[Angel Uranga]], \emph{From F/M-theory to K-theory and back}, JHEP 0602:008,2006 (\href{https://arxiv.org/abs/hep-th/0510073}{arXiv:hep-th/0510073}) \end{itemize} For more on this perspective as 10d type II as a [[self-dual higher gauge theory]] in the boudnary of a kind of [[higher dimensional Chern-Simons theory|11-d Chern-Simons theory]] is in \begin{itemize}% \item Dmitriy Belov, [[Greg Moore]], \emph{Type II Actions from 11-Dimensional Chern-Simons Theories} (\href{http://arxiv.org/abs/hep-th/0611020}{arXiv:hep-th/0611020}) \end{itemize} More complete discussion of the decomposition of the [[supergravity C-field]] as one passes from 11d to 10d is in \begin{itemize}% \item [[Varghese Mathai]], [[Hisham Sati]], \emph{Some Relations between Twisted K-theory and E8 Gauge Theory}, JHEP0403:016,2004 (\href{http://arxiv.org/abs/hep-th/0312033}{arXiv:hep-th/0312033}) \end{itemize} \hypertarget{for_the_cfield_in_mtheory}{}\subsubsection*{{For the C-field in M-theory}}\label{for_the_cfield_in_mtheory} Discussion of charge quantization of the [[C-field]] in [[D=11 supergravity]]/[[M-theory]]: \begin{itemize}% \item E. Diaconescu, [[Dan Freed]], [[Greg Moore]], \emph{The $M$-theory 3-form and $E_8$-gauge theory}, chapter in [[Haynes Miller]], [[Douglas Ravenel]] (eds.) \emph{Elliptic Cohomology Geometry, Applications, and Higher Chromatic Analogues}, Cambridge University Press 2007 (\href{http://arxiv.org/abs/hep-th/0312069}{arXiv:hep-th/0312069}, \href{https: //doi.org/10.1017/CBO9780511721489}{doi:10.1017/CBO9780511721489}) \item [[Dan Freed]], [[Greg Moore]], \emph{Setting the [[quantum integrand]] of M-theory}, Communications in Mathematical Physics, Volume 263, Number 1, 89-132, (\href{http://arxiv.org/abs/hep-th/0409135}{arXiv:hep-th/0409135}, \href{https://doi.org/10.1007/s00220-005-1482-7}{doi:10.1007/s00220-005-1482-7}) \item [[Greg Moore]], \emph{Anomalies, Gauss laws, and Page charges in M-theory} (\href{http://arxiv.org/abs/hep-th/0409158}{arXiv:hep-th/0409158}) \item [[Domenico Fiorenza]], [[Hisham Sati]], [[Urs Schreiber]], \emph{[[schreiber:The moduli 3-stack of the C-field]]}, Communications in Mathematical Physics, Volume 333, Issue 1 (2015), Page 117-151, (\href{http://arxiv.org/abs/1202.2455}{arXiv:1202.2455}, \href{http://link.springer.com/article/10.1007%2Fs00220-014-2228-1}{DOI 10.1007/s00220-014-2228-1}) \item [[Domenico Fiorenza]], [[Hisham Sati]], [[Urs Schreiber]], \emph{[[schreiber:7d Chern-Simons theory and the 5-brane|M5-branes, String 2-connections, and 7d nonabelian Chern-Simons theory]]} Advances in Theoretical and Mathematical Physics, Volume 18, Number 2 (2014) p. 229?321 (\href{http://arxiv.org/abs/1201.5277}{arXiv:1201.5277}, \href{https://dx.doi.org/10.4310/ATMP.2014.v18.n2.a1}{doi:10.4310/ATMP.2014.v18.n2.a1}) \end{itemize} Discussion in [[twisted Cohomotopy]] (``[[schreiber:Hypothesis H]]''): \begin{itemize}% \item [[Domenico Fiorenza]], [[Hisham Sati]], [[Urs Schreiber]], \emph{[[schreiber:Twisted Cohomotopy implies M-theory anomaly cancellation]]} (\href{https://arxiv.org/abs/1904.10207}{arXiv:1904.10207}) \item [[Domenico Fiorenza]], [[Hisham Sati]], [[Urs Schreiber]], \emph{[[schreiber:Twisted Cohomotopy implies M5 WZ term level quantization]]} (\href{https://arxiv.org/abs/1906.07417}{arXiv:1906.07417}) \end{itemize} and in [[equivariant Cohomotopy]]: \begin{itemize}% \item [[nLab:Hisham Sati]], [[nLab:Urs Schreiber]], \emph{[[schreiber:Equivariant Cohomotopy implies orientifold tadpole cancellation]]} (\href{https://arxiv.org/abs/1909.12277}{arXiv:1909.12277}) \end{itemize} [[!redirects Dirac's charge quantization]] [[!redirects charge quantization]] [[!redirects charge quantizations]] \end{document}