\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{Dirac interaction picture} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{algebraic_qunantum_field_theory}{}\paragraph*{{Algebraic Qunantum Field Theory}}\label{algebraic_qunantum_field_theory} [[!include AQFT and operator algebra contents]] \hypertarget{physics}{}\paragraph*{{Physics}}\label{physics} [[!include physicscontents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{InQuantumMechanics}{In quantum mechanics}\dotfill \pageref*{InQuantumMechanics} \linebreak \noindent\hyperlink{in_quantum_field_theory}{In quantum field theory}\dotfill \pageref*{in_quantum_field_theory} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} The ``interaction picture'' in [[quantum physics]] is a way to decompose solutions to the [[Schrödinger equation]] and more generally the construction of [[quantum field theories]] into a [[free field theory]]-part and the [[interaction]] part that acts as a [[perturbation]] of the free theory. Therefore the interaction picture lends itself to the construction of [[perturbative quantum field theory]], and in fact the only mathematically rigorous such construction scheme that is known, namely \emph{[[causal perturbation theory]]}, proceeds this way. [[dynamics|Dynamics]] in [[physics]] affects both [[observables]] and, dually, [[states]]; this is most well known in [[quantum physics]] but applies equally well to [[classical physics]]. The different ``pictures'' of physics differ in how the dynamics is explicitly formalized: \begin{itemize}% \item In the [[Schrödinger picture]], states are propagated through [[time]], while observables are held fixed; the axiomatic formalization of this is given by [[cobordism category]] [[representation]]s in [[FQFT]]. \item In the [[Heisenberg picture]], the dependence of observables on time (or more generally [[spacetime]]) is encoded, while the state is held fixed; the axiomatic formalization of this is given by the [[Haag–Kastler axioms]] of [[AQFT]]. \item The \textbf{Dirac (interaction) picture} is a mixture of these two approaches: dynamics is split into a free (or otherwise solvable) part and an [[interaction]] (often then treated as a [[perturbation theory|perturbation]]); one of these is taken to affect the states, the other the observables. \end{itemize} The pictures are named after those physicists who first used or popularised these approaches to quantum physics. \hypertarget{InQuantumMechanics}{}\subsubsection*{{In quantum mechanics}}\label{InQuantumMechanics} In [[quantum mechanics]], let $\mathcal{H}$ be some [[Hilbert space]] and let \begin{displaymath} H = H_{free} + V \end{displaymath} be Hermitian operator, thought of as a [[Hamiltonian]], decomposed as the [[sum]] of a free part ([[kinetic energy]]) and an interaction part ([[potential energy]]). For example for a [[non-relativistic particle]] of [[mass]] $m$ propagating on the [[line]] subject to a [[potential energy]] $V_{pot} \colon \mathbb{R} \to \mathbb{R}$, then $\mathcal{H} = L^2(X)$ is the Hilbert space space of [[square integrable functions]] and \begin{displaymath} H = \underset{H_{free}}{\underbrace{\tfrac{- \hbar^2}{2m} \frac{\partial^2}{\partial^2 x}}} + V \,, \end{displaymath} where $V = V_{pot}(x)$ is the operator of multiplying square integrable functions with the given potential energy function. Now for \begin{displaymath} \itexarray{ \mathbb{R} &\overset{\vert \psi (-)\rangle }{\longrightarrow}& \mathcal{H} \\ t &\mapsto& \vert \psi(t) \rangle } \end{displaymath} a one-parameter family of [[quantum states]], the [[Schrödinger equation]] for this state reads \begin{displaymath} \frac{d}{d t} \vert \psi(t) \rangle \;=\; \tfrac{1}{i \hbar} H \vert \psi\rangle \,. \end{displaymath} It is easy to solve this [[differential equation]] formally via its [[Green function]]: for $\vert \psi \rangle \in \mathcal{H}$ any state, then the unique solution $\vert \psi(-) \rangle$ to the Schr\"o{}dinger equation subject to $\vert \psi(0) \rangle = \vert \psi \rangle$ is \begin{displaymath} \vert \psi(t)\rangle_S \coloneqq \exp( \tfrac{t}{i \hbar} H ) \vert \psi \rangle \,. \end{displaymath} (One says that this is the solution ``in the [[Schrödinger picture]]'', whence the subscript.) However, if $H$ is sufficiently complicated, it may still be very hard to extract from this expression a more explicit formula for $\vert \psi(t) \rangle$, such as, in the example of the free particle on the line, its expression as a function (``[[wave function]]'') of $x$ and $t$. But assume that the analogous expression for $H_{free}$ alone is well understood, hence that the operator \begin{displaymath} U_{S,free}(t_1, t_2) \coloneqq \exp\left({\tfrac{t_2 - t_1}{i \hbar} H_{free}}\right) \end{displaymath} is sufficiently well understood. The ``[[interaction picture]]'' is a way to decompose the Schr\"o{}dinger equation such that its dependence on $V$ gets separated from its dependence on $H_{free}$ in a way that admits to treat $H_{int}$ in [[perturbation theory]]. Namely define analogously \begin{equation} \begin{aligned} \vert \psi(t)\rangle_I &\coloneqq \exp\left({\tfrac{- t}{i \hbar} H_{free}}\right) \vert \psi(t)\rangle_S \\ & = \exp\left({\tfrac{- t}{i \hbar} H_{free}}\right) \exp\left({ \tfrac{+ t}{i \hbar} H} \right)\vert \psi \rangle \\ & = \exp\left({\tfrac{- t}{i \hbar} H_{free}}\right) \exp\left({\tfrac{t}{i \hbar} H_{free} + \tfrac{t}{i \hbar} V} \right)\vert \psi \rangle \end{aligned} \,. \label{StateInTheInteractionPicture}\end{equation} This is called the solution of the Schr\"o{}dinger equation ``in the [[interaction picture]]'', whence the subscript. Its definition may be read as the result of propagating the actual solution $\vert \psi(-)\rangle_S$ at time $t$ back to time $t = 0$, but using just the free Hamiltonian, hence with ``the interaction switched off''. Notice that if the operator $V$ were to commute with $H_{free}$ (which it does not in all relevant examples) then we would simply have $\vert \psi(t)\rangle_I = \exp( \tfrac{t}{i \hbar } V ) \vert \psi\rangle$, hence then the solution \eqref{StateInTheInteractionPicture} in the interaction picture would be the result of ``propagating'' the initial conditions using \emph{only} the interaction. Now since $V$ may not be assumed to commute with $H_{free}$, the actual form of $\vert \psi(-) \rangle_{I}$ is more complicated. But \emph{infinitesimally} it remains true that $\vert \psi(-)\rangle_I$ is propagated this way, not by the plain operator $V$, though, but by $V$ viewed in the [[Heisenberg picture]] of the free theory. This is the content of the differential equation \eqref{DifferentialEquationInInteractionPicture} below. But first notice that this will indeed be useful: If an explicit expression for the ``state in the [[interaction picture]]'' \eqref{StateInTheInteractionPicture} is known, then the assumption that also the operator $\exp\left({\tfrac{t}{i \hbar} H_{free}}\right)$ is sufficiently well understood implies that the actual solution \begin{displaymath} \vert \psi(t) \rangle_S = \exp\left({\tfrac{t}{i \hbar} H_{free}}\right) \vert \psi(t) \rangle_I \end{displaymath} is under control. Hence the question now is how to find $\vert \psi(-)\rangle_I$ given its value at some time $t$. (It is conventional to consider this for $t \to \pm \infty$, see \eqref{SMatrixInQuantumMechanics} below.) Now it is clear from the construction and using the [[product law]] for [[differentiation]], that $\vert \psi(-)\rangle_S$ satisfies the following [[differential equation]]: \begin{equation} \frac{d}{d t} \vert \psi(t) \rangle \;=\; V_I(t) \vert \psi(t)\rangle_I \,, \label{DifferentialEquationInInteractionPicture}\end{equation} where \begin{displaymath} V_I(t) \coloneqq \exp\left( -\tfrac{t}{i \hbar} H_{free} \right) V \exp\left( +\tfrac{t}{i \hbar} H_{free} \right) \end{displaymath} is known as the [[interaction]] term $V$ ``viewed in the interaction picture''. But in fact this is just $V$ ``viewed in the [[Heisenberg picture]]'', but for the \emph{free} theory. By our running assumption that the free theory is well understood, also $V_I(t)$ is well understood, and hence all that remains now is to find a sufficiently concrete solution to equation \eqref{DifferentialEquationInInteractionPicture}. This is the heart of working in the interaction picture. Solutions to equations of the ``[[parallel transport]]''-type such as \eqref{DifferentialEquationInInteractionPicture} are given by [[time-ordered product|time-ordering]] of Heisenberg picture operators, denoted $T$, applied to the naive exponential solution as above. This is known as the \emph{[[Dyson formula]]}: \begin{displaymath} \vert \psi(t)\rangle_I \;=\; T\left( \exp\left( \int_{t_0}^t V_I(t) \tfrac{d t}{i \hbar} \right) \right) \vert \psi(t_0)\rangle \,. \end{displaymath} Here [[time-ordered product|time-ordering]] means \begin{displaymath} T( V_I(t_1) V_I(t_2) ) \;\coloneqq\; \left\{ \itexarray{ V_I(t_1) V_I(t_2) &\vert& t_1 \geq t_2 \\ V_I(t_2) V_I(t_1) &\vert& t_2 \geq t_2 } \right. \,. \end{displaymath} (This is abuse of notation: Strictly speaking time ordering acts on the [[tensor algebra]] spanned by the $\{V_I(t)\}_{t \in \mathbb{R}}$ and has to be \emph{folllowed} by taking tensor products to actual products. ) In applications to [[scattering]] processes one is interest in prescribing the [[quantum state]]/[[wave function]] far in the past, hence for $t \to - \infty$, and computing its form far in the future, hence for $t \to \infty$. The operator that sends such ``asymptotic ingoing-states'' $\vert \psi(-\infty) \rangle_I$ to ``asymptic outgoing states'' $\vert \psi(+ \infty) \rangle_I$ is hence the [[limit of a sequence|limit]] \begin{equation} S \;\coloneqq\; \underset{t \to \infty}{\lim} T\left( \exp\left( \int_{-t}^t V_I(t) \tfrac{d t}{i \hbar} \right) \right) \,. \label{SMatrixInQuantumMechanics}\end{equation} This limit (if it exists) is called the \emph{scattering matrix} or \emph{S-matrix}, for short. \hypertarget{in_quantum_field_theory}{}\subsubsection*{{In quantum field theory}}\label{in_quantum_field_theory} In [[perturbative quantum field theory]] the broad structure of the interaction picture in quantum mechanics (\hyperlink{InQuantumMechanics}{above}) remains a very good guide, but various technical details have to be generalized with due care: \begin{enumerate}% \item The algebra of operators in the [[Heisenberg picture]] of the free theory becomes the \emph{[[Wick algebra]]} of the [[free field theory]] (taking into account ``normal ordering'' of field operators) defined on \emph{[[microcausal functionals]]} built from [[operator-valued distributions]] with constraints on their [[wave front set]]. \item The [[time-ordered products]] in the [[Dyson formula]] have to be refined to [[causal locality|causally ordered]] products and the resulting product at coincident points has to be defined by [[point-extension of distributions]] -- the freedom in making this choice is the [[renormalization]] freedom (``conter-terms''). \item The sharp interaction cutoff in the [[Dyson formula]] that is hidden in the integration over $[t_0,t]$ has to be smoothed out by [[adiabatic switching]] of the interaction (making the whole S-matrix an [[operator-valued distribution]]). \end{enumerate} Together these three point are taken care of by the axiomatization of the ``[[adiabatic switching|adiabatically switched]] [[S-matrix]]'' according to \textbf{[[causal perturbation theory]]}. The analogue of the limit $t \to \infty$ in the construction of the [[S-matrix]] (now: [[adiabatic limit]]) in general does not exist in field theory (``infrared divergencies''). But in fact it need not be taken: The field algebra in a bounded region of [[spacetime]] may be computed with any adiabatic switching that is constant on this region. Moreover, the algebras assigned to regions of spacetime this way satisfy [[causal locality]] by the causal ordering in the construction of the S-matrix. Therefore, even without taking the adiabtic limit in [[causal perturbation theory]] one obtains a field theory in the form of a \emph{[[local net of observables]]}. This is the topic of \textbf{[[locally covariant perturbative quantum field theory]]}. \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[interaction]] \item [[interacting field algebra]] \item [[interacting field theory]] \item [[S-matrix]] \item [[Møller operator]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} For instance \begin{itemize}% \item [[Eberhard Zeidler]], section 7.19.3 of \emph{Quantum field theory. A bridge between mathematicians and physicists -- volume I} Springer (2009) (\href{http://www.mis.mpg.de/zeidler/qft.html}{web}) \end{itemize} [[!redirects Dirac picture]] [[!redirects interaction picture]] [[!redirects Dirac interaction picture]] [[!redirects Dirac (interaction) picture]] \end{document}