\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{Dirac operator} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{spin_geometry}{}\paragraph*{{Spin geometry}}\label{spin_geometry} [[!include higher spin geometry - contents]] \hypertarget{index_theory}{}\paragraph*{{Index theory}}\label{index_theory} [[!include index theory - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{general}{General}\dotfill \pageref*{general} \linebreak \noindent\hyperlink{origin_and_role_in_physics}{Origin and role in Physics}\dotfill \pageref*{origin_and_role_in_physics} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{in_components}{In components}\dotfill \pageref*{in_components} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{eta_invariant_and_functional_determinant}{Eta invariant and functional determinant}\dotfill \pageref*{eta_invariant_and_functional_determinant} \linebreak \noindent\hyperlink{index_and_partition_function}{Index and partition function}\dotfill \pageref*{index_and_partition_function} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} \hypertarget{general}{}\subsubsection*{{General}}\label{general} For $S \to X$ a [[spinor bundle]] over a [[Riemannian manifold]] $(X,g)$, a \emph{Dirac operator} on $S$ is an [[differential operator]] on ([[sections]] of) $S$ whose [[principal symbol]] is that of $c \circ d$, where $d$ is the [[exterior derivative]] and $c$ is the [[symbol map]]. More abstractly, for $D$ a Dirac operator, its normalization $D(1+ D^2)^{-1/2}$ is a [[Fredholm operator]], hence defines an element in [[K-homology]]. \hypertarget{origin_and_role_in_physics}{}\subsubsection*{{Origin and role in Physics}}\label{origin_and_role_in_physics} The first relativistic Schr\"o{}dinger type equation found was Klein-Gordon. At first it did not look that K-G equation could be interpreted physically because of negative energy states and other paradoxes. [[Paul Dirac]] proposed to take a square root of [[Laplace operator]] within the matrix-valued differential operators and obtained a Dirac equation; matrix valued generators involved representations of a Clifford algebra. It also had negative energy solutions, but with half-integer spin interpretation which was appropriate the Pauli exclusion principle together with the Dirac sea picture came at rescue (Klein-Gordon is now also useful with more modern formalisms). (\ldots{}) \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} \hypertarget{in_components}{}\subsubsection*{{In components}}\label{in_components} The tangent bundle of an oriented Riemannian $n$-dimensional manifold $M$ is an $SO(n)$-bundle. Orientation means that the first [[Stiefel-Whitney class]] $w_1(M)$ is zero. If $w_2(M)$ is zero than the $SO(n)$ bundle can be lifted to a $Spin(n)$-bundle. A choice of connection on such a $Spin(n)$-bundle is a $Spin$-structure on $M$. There is a standard $2^{[n/2]}$-dimensional representation of $Spin(n)$-group, so called Spin representation. If $n$ is odd it is irreducible, and if $n$ is even it decomposes into the sum of two irreducible representations of equal dimension $S_+$ and $S_-$. Thus we can associate associated bundles to the original $Spin(n)$ bundle $P$ with respect to these representations. Thus we get the \textbf{spinor bundles} $E_\pm := P\times_{Spin(n)} S_\pm\to M$ and $E = E_+\oplus E_-$. Gamma matrices, which are the representations of the [[Clifford algebra]] \begin{displaymath} \gamma_a \gamma_b + \gamma_b \gamma_a = -2\delta_{ab} I \end{displaymath} \begin{displaymath} \gamma_5 = i^{n(n+1)/2}\gamma_1\cdots\gamma_n, \,\,\,\,\gamma^2_5 = I \end{displaymath} thus act on such a space; certain combinations of products of gamma matrices with partial derivatives define a first order Dirac operator $\Gamma(E)\to\Gamma(E_-)$; there are several versions, in mathematics is pretty important the chiral Dirac operator \begin{displaymath} \Gamma(M,E_+)\to \Gamma(M,E_-) \end{displaymath} given by local formula \begin{displaymath} \sum_a \gamma^a e^\mu_a(x) \nabla_\mu \frac{1+\gamma_5}{2} \end{displaymath} where $e^\mu_a(x)$ are orthonormal frames of tangent vectors and $\nabla_\mu$ is the [[covariant derivative]] with respect to the Levi-Civita spin connection. The expression $\frac{1+\gamma_5}{2}$ is the chirality operator. In Euclidean space the Dirac operator is elliptic, but not in Minkowski space. The Dirac operator is involved in approaches to the [[Atiyah-Singer index theorem]] about the index of an elliptic operator: namely the index can be easier calculated for Dirac operator and the deformation to the Dirac operator does not change the index. An appropriate version of a Dirac operator is a part of a concept of the [[spectral triple]] in [[noncommutative geometry]] a la [[Alain Connes]]. \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{eta_invariant_and_functional_determinant}{}\subsubsection*{{Eta invariant and functional determinant}}\label{eta_invariant_and_functional_determinant} The [[eta function]] (see there for more) of a Dirac operator $D$ expresses the [[functional determinant]] of its [[Laplace operator]] $H = D^2$. \hypertarget{index_and_partition_function}{}\subsubsection*{{Index and partition function}}\label{index_and_partition_function} \begin{prop} \label{}\hypertarget{}{} Let $(X,g)$ be a [[compact topological space|compact]] [[Riemannian manifold]] and $\mathcal{E}$ a smooth [[super vector bundle]] and indeed a [[Clifford module bundle]] over $X$. Consider a Dirac operator \begin{displaymath} D \colon \Gamma(X,\mathcal{E}) \to \Gamma(X, \mathcal{E}) \end{displaymath} with components (with respect to the $\mathbb{Z}_2$-[[graded vector space|grading]]) to be denoted \begin{displaymath} D = \left[ \itexarray{ 0 & D^- \\ D^+ & 0 } \right] \,, \end{displaymath} where $D^- = (D^+)^\ast$. Then $D^+$ is a [[Fredholm operator]] and its [[index]] is the [[supertrace]] of the [[kernel]] of $D$, as well as of the [[heat kernel]] of $D^2$: \begin{displaymath} \begin{aligned} ind(D^+) & \coloneqq dim(ker(D^+)) - dim(coker(D^+)) \\ & = dim(ker(D^+)) - dim(ker(D^-)) \\ & = sTr(ker(D)) \\ & = sTr( \exp(-t \, D^2) ) \;\;\; \forall t \gt 0 \end{aligned} \,. \end{displaymath} \end{prop} This appears as (\href{BerlineGetzlerVergne04}{Berline-Getzler-Vergne 04, prop. 3.48, prop. 3.50}), based on (\hyperlink{MacKeanSinger67}{MacKean-Singer 67}). \begin{remark} \label{}\hypertarget{}{} If one thinks of $D^2$ as the time-evolution [[Hamiltonian]] of a system of [[supersymmetric quantum mechanics]] with $D$ the [[supercharge]] on the [[worldline]], then $ker(D)$ is the space of supersymmetric [[quantum states]], $\exp(-t \, D^2)$ is the Euclidean time evolution operator and its [[supertrace]] is the [[partition function]] of the system. Hence we have the translation \begin{itemize}% \item index = partition function . \end{itemize} \end{remark} \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \begin{itemize}% \item [[Kähler-Dirac operator]] \item [[Dolbeault-Dirac operator]] \item [[Spin{\tt \symbol{94}}c Dirac operator]] \end{itemize} \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[Dirac spinor]], [[Dirac field]] \item [[Dirac equation]] \item [[spin{\tt \symbol{94}}c Dirac operator]] \item [[index of a Dirac operator]] \item [[Fredholm module]], [[K-homology]], [[KK-theory]] \item [[Lichnerowicz formula]] \item [[Dirac-Ramond operator]], [[Dirac operator on smooth loop space]] \item [[Feynman slash notation]] \end{itemize} [[!include genera and partition functions - table]] \hypertarget{references}{}\subsection*{{References}}\label{references} Textbooks include \begin{itemize}% \item [[H. Blaine Lawson]], [[Marie-Louise Michelsohn]], \emph{[[Spin geometry]]}, Princeton University Press (1989) \item [[Thomas Friedrich]], \emph{Dirac operators in Riemannian geometry}, Graduate studies in mathematics 25, AMS (1997) \end{itemize} The relation to [[index theory]] is discussed in \begin{itemize}% \item [[Nicole Berline]], [[Ezra Getzler]], [[Michèle Vergne]], \emph{Heat Kernels and Dirac Operators}, Springer Verlag Berlin (2004) \end{itemize} based on original articles such as \begin{itemize}% \item H. MacKean, [[Isadore Singer]], \emph{Curvature and eigenvalues of the Laplacian}, J. Diff. Geom. 1 (1967) \end{itemize} \begin{itemize}% \item [[Michael Atiyah]], [[Raoul Bott]], V. K. Patodi, \emph{On the heat equation and the index theorem}, Invent. Math. 19 (1973), 279--330. \end{itemize} See also \begin{itemize}% \item [[Dan Freed]], \emph{Geometry of Dirac operators} (\href{http://www.ma.utexas.edu/users/dafr/DiracNotes.pdf}{pdf}) \end{itemize} \begin{itemize}% \item C. Nash, \emph{Differential topology and quantum field theory}, Acad. Press 1991. \item [[Eckhard Meinrenken]], \emph{Clifford algebras and Lie groups}, Lecture Notes, University of Toronto, Fall 2009. \item Jing-Song Huang, Pavle Pandi, J.-S. Huang, P. Pandzic, Dirac Operators in Representation Theory,. Birkh\"a{}user, Boston, 2006, 199 pages; short version \emph{Dirac operators in representation theory}, 48 pp. \href{http://www.ims.nus.edu.sg/Programs/liegroups/files/singnotes.pdf}{pdf} \item J.-S. Huang, Pavle Pandi, \emph{Dirac cohomology, unitary representations and a proof of a conjecture of Vogan}, J. Amer. Math. Soc. \textbf{15} (2002), 185---202. \item R. Parthasarathy, \emph{Dirac operator and the discrete series}, Ann. of Math. \textbf{96} (1972), 1-30. \end{itemize} [[!redirects Dirac operators]] \end{document}