\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{Dolbeault complex} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{complex_geometry}{}\paragraph*{{Complex geometry}}\label{complex_geometry} [[!include complex geometry - contents]] \hypertarget{differential_geometry}{}\paragraph*{{Differential geometry}}\label{differential_geometry} [[!include synthetic differential geometry - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{dolbeault_complex}{Dolbeault complex}\dotfill \pageref*{dolbeault_complex} \linebreak \noindent\hyperlink{holomorphic_differential_forms}{Holomorphic differential forms}\dotfill \pageref*{holomorphic_differential_forms} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{DolbeaultTheorem}{Dolbeault theorem}\dotfill \pageref*{DolbeaultTheorem} \linebreak \noindent\hyperlink{on_stein_manifolds}{On Stein manifolds}\dotfill \pageref*{on_stein_manifolds} \linebreak \noindent\hyperlink{todd_genus}{Todd genus}\dotfill \pageref*{todd_genus} \linebreak \noindent\hyperlink{relation_to_structures}{Relation to $Spin^c$-structures}\dotfill \pageref*{relation_to_structures} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} The \emph{Dolbeault complex} is the analog of the [[de Rham complex]] in [[complex geometry]]. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} \hypertarget{dolbeault_complex}{}\subsubsection*{{Dolbeault complex}}\label{dolbeault_complex} On a [[complex manifold]] $X$ the [[de Rham complex]] $\Omega^\bullet(X)$ refines to a [[bigraded object|bigraded]] complex $\Omega^{\bullet, \bullet}(X)$, where a [[differential form]] of bidegree $(p,q)$ has holomorphic degree $p$ and antiholomorphic degree $q$, hence is given on a local [[coordinate chart]] by an expression of the form \begin{displaymath} \omega = \sum f_{I J} d z_{i_1} \wedge \cdots \wedge d z_{i_p} \wedge d \bar z_{j_1} \wedge \cdots \wedge d \bar z_{j_q} \,. \end{displaymath} Moreover, the [[de Rham differential]] $\mathbf{d}$ decomposes as \begin{displaymath} \mathbf{d} = \partial + \bar \partial \,, \end{displaymath} where $\partial \colon \Omega^{\bullet, \bullet}\to \Omega^{\bullet + 1, \bullet}$ and $\bar \partial \colon \Omega^{\bullet, \bullet}\to \Omega^{\bullet, \bullet + 1}$. The \emph{Dolbeault complex} of $X$ is the [[chain complex]] $(\Omega^{\bullet, \bullet}(X), \bar \partial)$. The \emph{[[Dolbeault cohomology]]} of $X$ is the [[cochain cohomology]] of this complex. \hypertarget{holomorphic_differential_forms}{}\subsubsection*{{Holomorphic differential forms}}\label{holomorphic_differential_forms} Here $\Omega^{p,0}(X)$ defines a [[holomorphic vector bundle]] and a [[holomorphic section]] is a differential form with local expression as above, such that the coefficient functions $f_{I J}$ are [[holomorphic functions]]. This is called a \emph{holomorphic differential form}. For $p \lt dim_{\mathbb{C}}(X)$ equivalently this is a differential form in the [[kernel]] of the antiholomorphic Dolbeault operator $\bar \partial$. \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{DolbeaultTheorem}{}\subsubsection*{{Dolbeault theorem}}\label{DolbeaultTheorem} The complex analog of the [[de Rham theorem]] is the [[Dolbeault theorem]]: for $X$ a [[complex manifold]] then ints [[Dolbeault cohomology]] in bi-degree $(p,q)$ is [[natural isomorphism|naturally isomorphic]] to the [[abelian sheaf cohomology]] in degree $q$ of the [[abelian sheaf]] $\Omega^p \coloneqq \Omega^{p,0}$ of [[holomorphic p-forms]] \begin{displaymath} H^{p,q}(X)\simeq H^q(X,\Omega^p) \,. \end{displaymath} (\ldots{}) Let $Disk_{compl}$ be the [[category]] of complex [[polydiscs]] in $\mathbb{C}^n$ and [[holomorphic functions]] between them. For $p \in \mathbb{N}$ write $\Omega^p \colon Disk_{complex}^{op} \to Set$ for the [[sheaf]] of holomorphic [[differential n-form|differential p-forms]]. \begin{prop} \label{}\hypertarget{}{} For $X$ a [[complex manifold]], let $\{U_i \to X\}$ be a holomorphic good open cover. Then the [[Cech cohomology]] of this cover with [[coefficients]] in $\Omega^p$ in degree $q$ is the [[Dolbeault cohomology]] in bidegree $(p,q)$ \begin{displaymath} H^{p,q}(X) \simeq \pi_0 sPSh(Disk_{comp})(C(\{U_i\}, \Omega^p[q])) \,. \end{displaymath} \end{prop} For instance (\hyperlink{Maddock}{Maddock, theorem 1.0.1}). \hypertarget{on_stein_manifolds}{}\subsubsection*{{On Stein manifolds}}\label{on_stein_manifolds} \begin{prop} \label{}\hypertarget{}{} \textbf{([[Cartan theorem B]])} For $X$ a [[Stein manifold]], \begin{displaymath} H^k(\Omega^{p,\bullet}(X), \bar \partial) = \left\{ \itexarray{ 0 & k \neq 0 \\ \Omega^p_{hol}(X) & k = 0 } \right. \,. \end{displaymath} \end{prop} For instance (\hyperlink{GunningRossi}{Gunning-Rossi}). \begin{prop} \label{}\hypertarget{}{} For $X$ a [[Stein manifold]] of complex [[dimension]] $n$, the [[compactly supported cohomology|compactly supported]] Dolbeault [[cohomology]] is \begin{displaymath} H^k(\Omega_c^{p, \bullet}(X), \bar \partial) = \left\{ \itexarray{ 0 , & k \neq n \\ (\Omega_{hol}^{n-p}(X))^\ast } \right. \,, \end{displaymath} where on the right $(-)^\ast$ denotes the continuous linear dual. \end{prop} First noticed in (\hyperlink{Serre}{Serre}). \hypertarget{todd_genus}{}\subsubsection*{{Todd genus}}\label{todd_genus} By the [[Hirzebruch-Riemann-Roch theorem]] the [[index]] of the Dolbeault operator is the [[Todd genus]]. \hypertarget{relation_to_structures}{}\subsubsection*{{Relation to $Spin^c$-structures}}\label{relation_to_structures} A [[complex manifold]], being in particular an [[almost complex manifold]], carries a canonical [[spin{\tt \symbol{94}}c structure]]. The corresponding [[Spin{\tt \symbol{94}}c Dirac operator]] identifies with the Dolbeault operator under the identification of the [[spinor bundle]] with that of [[holomorphic differential forms]] \begin{displaymath} S(X) \simeq \wedge^{0,\bullet} T^\ast X \,. \end{displaymath} \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[Dolbeault cohomology]] \item [[Dolbeault-Dirac operator]] \item [[chiral Dolbeault complex]] \item [[holomorphic de Rham complex]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} \begin{itemize}% \item [[Claire Voisin]], section 2.3 of \emph{[[Hodge theory and Complex algebraic geometry]] I,II}, Cambridge Stud. in Adv. Math. \textbf{76, 77}, 2002/3 \item Zachary Maddock, \emph{Dolbeault cohomology} (\href{http://www.math.columbia.edu/~maddockz/notes/dolbeault.pdf}{pdf}) \item Robert C. Gunning and Hugo Rossi, \emph{Analytic functions of several complex variables}, Prentice-Hall Inc., Englewood Cliffs, N.J., (1965) \item [[Jean-Pierre Serre]], \emph{Quelques probl\`e{}mes globaux relatifs aux vari\'e{}t\'e{}s de Stein}, Colloque sur les fonctions de plusieurs variables, tenu \`a{} Bruxelles, 1953, Georges Thone, Li\`e{}ge, 1953, pp. 57--68. MR 0064155 (16,235b) \end{itemize} A [[formal geometry]] version: \begin{itemize}% \item Shilin Yu, \emph{Dolbeault dga of a formal neighborhood}, \href{http://arxiv.org/abs/1206.5155}{arxiv/1206.5155}; \emph{The Dolbeault dga of the formal neighborhood of a diagonal}, \href{http://arxiv.org/abs/1211.1567}{arxiv/1211.1567} \end{itemize} [[!redirects Dolbeault cohomology]] [[!redirects holomorphic smooth function]] [[!redirects holomorphic function]] [[!redirects holomorphic smooth functions]] [[!redirects holomorphic functions]] [[!redirects holomorphic differential 1-form]] [[!redirects holomorphic 1-form]] [[!redirects holomorphic differential form]] [[!redirects holomorphic differential 1-forms]] [[!redirects holomorphic 1-forms]] [[!redirects holomorphic differential forms]] [[!redirects holomorphic form]] [[!redirects holomorphic forms]] [[!redirects holomorphic differential p-form]] [[!redirects holomorphic differential p-forms]] [[!redirects holomorphic p-form]] [[!redirects holomorphic p-forms]] [[!redirects Dolbeault differential]] [[!redirects Dolbeault differentials]] [[!redirects Dolbeault operator]] [[!redirects Dolbeault operators]] \end{document}