\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{Donaldson-Thomas invariant} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{motivic_cohomology}{}\paragraph*{{Motivic cohomology}}\label{motivic_cohomology} [[!include motivic cohomology - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{in_mathematics}{In mathematics}\dotfill \pageref*{in_mathematics} \linebreak \noindent\hyperlink{in_string_theory}{In string theory}\dotfill \pageref*{in_string_theory} \linebreak \noindent\hyperlink{Motivic}{Motivic DT invariants}\dotfill \pageref*{Motivic} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \noindent\hyperlink{general}{General}\dotfill \pageref*{general} \linebreak \noindent\hyperlink{motivic_donaldsonthomas_invariants}{Motivic Donaldson-Thomas invariants}\dotfill \pageref*{motivic_donaldsonthomas_invariants} \linebreak \noindent\hyperlink{relation_to_wall_crossing}{Relation to wall crossing}\dotfill \pageref*{relation_to_wall_crossing} \linebreak \noindent\hyperlink{RelationToStringTheory}{Relation to string theory}\dotfill \pageref*{RelationToStringTheory} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} \hypertarget{in_mathematics}{}\subsubsection*{{In mathematics}}\label{in_mathematics} Consider a complex projective [[Calabi-Yau manifold|Calabi-Yau 3-manifold]] $X$ with volume form $vol_X$. R. Thomas considered in his 1997 thesis a holomorphic version of the [[Casson invariant]] which may be defined using the holomorphic [[Chern-Simons theory|Chern-Simons functional]]. For a holomorphic connection $A = A_0 +\alpha$, the holomorphic Chern-Simons functional is given by \begin{displaymath} CS(A) = \int_X Tr(\bar\nabla_{A_0} \alpha\wedge\alpha +\frac{1}{2}\alpha\wedge\alpha\wedge\alpha) vol_X \end{displaymath} Its critical points are holomorphically flat connections: $F^{0,2}_A = 0$. One would like to count the critical points in appropriate sense, which means the integration over the suitable compactified moduli space of solutions. These solutions may be viewed as Hermitean Yang-Mills connections or as [[BPS state]]s in physical interpretation. The issues of compactification involve stability conditions which depend on the underlying [[Kähler manifold|Kähler form]]; as the K\"a{}hler form varies there are discontinuous jumps at the places of [[wall crossing]]. Under the [[mirror symmetry]], the holomorphic bundles correspond to the [[Lagrangian submanifold]]s in the mirror, and the stability condition restricts the attention to the [[special Lagrangian submanifold]]s in the mirror. \hypertarget{in_string_theory}{}\subsubsection*{{In string theory}}\label{in_string_theory} \ldots{} in [[heterotic string theory]]: \hyperlink{HeLee12}{He-Lee 12}\ldots{} \hypertarget{Motivic}{}\subsubsection*{{Motivic DT invariants}}\label{Motivic} A more general setup of [[motive|motivic]] Donaldson-Thomas invariants is given by [[Dominic Joyce]] and by [[Maxim Kontsevich]] and [[Yan Soibelman]], see the references below. \hypertarget{references}{}\subsection*{{References}}\label{references} \hypertarget{general}{}\subsubsection*{{General}}\label{general} \begin{itemize}% \item [[Simon Donaldson]], \ldots{} \item Young-Hoon Kiem, Jun Li, \emph{Categorification of Donaldson-Thomas invariants via Perverse Sheaves}, \href{http://arxiv.org/abs/1212.6444}{arxiv/1212.6444} \end{itemize} \hypertarget{motivic_donaldsonthomas_invariants}{}\subsubsection*{{Motivic Donaldson-Thomas invariants}}\label{motivic_donaldsonthomas_invariants} The original articles are \begin{itemize}% \item [[Dominic Joyce]], Yinan Song, \emph{A theory of generalized Donaldson-Thomas invariants} (\href{http://arxiv.org/abs/0810.5645}{arxiv/0810.5645}) \item [[Maxim Kontsevich]], [[Yan Soibelman]], \emph{Stability structures, motivic Donaldson-Thomas invariants and cluster transformations}, (\href{http://arxiv.org/abs/0811.2435}{arXiv:0811.2435}); \end{itemize} summarized in \begin{itemize}% \item [[Maxim Kontsevich]], [[Yan Soibelman]], \emph{Motivic Donaldson-Thomas invariants: summary of results}, (\href{http://arxiv.org/abs/0910.4315}{0910.4315}); \end{itemize} and with lecture notes in \begin{itemize}% \item [[Yan Soibelman]], \emph{Motivic Donaldson-Thomas invariants and wall-crossing formulas}, \href{http://math.berkeley.edu/~reshetik/CSR-Lectures.html}{Chern-Simons Research Lectures} 2010 (\href{http://math.berkeley.edu/~reshetik/CSRL/Yan-Berkeley-2010-2.pdf}{pdf}) \end{itemize} See also \begin{itemize}% \item [[Maxim Kontsevich]], [[Yan Soibelman]], \emph{Cohomological [[Hall algebra]], exponential Hodge structures and motivic Donaldson-Thomas invariants} (\href{http://arxiv.org/abs/1006.2706}{arxiv/1006.2706}) \item D.-E. Diaconescu, Z. Hua, Y. Soibelman, \emph{HOMFLY polynomials, stable pairs and motivic Donaldson-Thomas invariants}, \href{http://arxiv.org/abs/1202.4651}{arxiv/1202.4651} \item Tudor Dimofte, Sergei Gukov, \emph{Refined, Motivic, and Quantum}, \href{http://arxiv.org/abs/0904.1420}{arxiv/0904.1420} \item Vittoria Bussi, Shoji Yokura, \emph{Naive motivic Donaldson-Thomas type Hirzebruch classes and some problems}, \href{http://arxiv.org/abs/1306.4725}{arxiv/1306.4725} \item Andrew Morrison, Sergey Mozgovoy, Kentaro Nagao, Balazs Szendroi, \emph{Motivic Donaldson-Thomas invariants of the conifold and the refined topological vertex}, \href{http://arxiv.org/abs/1107.5017}{arxiv/1107.5017} \item Markus Reineke, \emph{Degenerate Cohomological Hall algebra and quantized Donaldson-Thomas invariants for m-loop quivers}, \href{http://arxiv.org/abs/1102.3978}{arxiv/1102.3978} \end{itemize} \hypertarget{relation_to_wall_crossing}{}\subsubsection*{{Relation to wall crossing}}\label{relation_to_wall_crossing} \begin{itemize}% \item [[Maxim Kontsevich]], [[Yan Soibelman]], \emph{Wall-crossing structures in Donaldson-Thomas invariants, integrable systems and Mirror Symmetry}, (\href{http://arxiv.org/abs/1303.3253}{arxiv/1303.3253}) \item S. Cecotti, [[Cumrun Vafa|C. Vafa]], \emph{[[BPS state|BPS]] wall crossing and topological strings}, \href{http://arxiv.org/abs/0910.2615}{arXiv/0910.2615} \item [[Davide Gaiotto]], [[Greg Moore|Gregory W. Moore]], [[Andrew Neitzke]], \emph{[[wall crossing|Wall-crossing]], [[Hitchin system]]s, and the [[WKB approximation]], \href{http://arxiv.org/abs/0907.3987}{arxiv/0907.3987}} \item sbseminar blog: \href{http://sbseminar.wordpress.com/2009/03/25/hall-algebras-and-donaldson-thomas-invariants-i}{Hall algebras and Donaldson-Thomas invariants-i} \end{itemize} \hypertarget{RelationToStringTheory}{}\subsubsection*{{Relation to string theory}}\label{RelationToStringTheory} In [[heterotic string theory]]: \begin{itemize}% \item [[Yang-Hui He]], Seung-Joo Lee, \emph{Quiver Structure of Heterotic Moduli}, J. High Energ. Phys. (2012) 2012: 119 (\href{https://arxiv.org/abs/1208.3004}{arXiv:1208.3004}) \end{itemize} Relation to [[Hilbert schemes]]: \begin{itemize}% \item Michele Cirafici, Annamaria Sinkovics, [[Richard Szabo]], \emph{Cohomological gauge theory, quiver matrix models and Donaldson-Thomas theory}, Nucl. Phys. B809: 452-518, 2009 (\href{https://arxiv.org/abs/0803.4188}{arXiv:0803.4188}) \item Artan Sheshmani, \emph{Hilbert Schemes, Donaldson-Thomas theory, Vafa-Witten and Seiberg-Witten theories}, Notices of the International Congress of Chines Mathematics (2019) (\href{http://j.mp/2U7qd01}{j.mp:2U7qd01}, \href{https://scholar.harvard.edu/files/artan/files/iccm_07_02_a03.pdf}{pdf}) \end{itemize} [[!redirects Donaldson-Thomas invariants]] [[!redirects motivic Donaldson-Thomas invariant]] [[!redirects Donaldson-Thomas theory]] \end{document}