\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{Dugger's theorem} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{model_category_theory}{}\paragraph*{{Model category theory}}\label{model_category_theory} [[!include model category theory - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{statement}{Statement}\dotfill \pageref*{statement} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} Dugger's theorem identifies [[combinatorial model categories]] as the [[model category]]-presentations of [[locally presentable (infinity,1)-categories]]. \hypertarget{statement}{}\subsection*{{Statement}}\label{statement} \begin{theorem} \label{}\hypertarget{}{} \textbf{(Dugger's theorem)} Every [[combinatorial model category]] $C$ is [[Quillen equivalence|Quillen equivalent]] to a left [[Bousfield localization of model categories|Bousfield localization]] $L_S SPSh(K)_{proj}$ of the global projective [[model structure on simplicial presheaves]] $SPSh(K)_{proj}$ on a [[small category]] $K$ \begin{displaymath} L_S SPSh(K)_{proj} \stackrel{\simeq_{Quillen}}{\to} C \,. \end{displaymath} \end{theorem} This is (\hyperlink{Dugger01}{Dugger 01, theorem 1.1}) building on results in (\hyperlink{DuggerUniversalHomotopy}{DuggerUniversalHomotopy}). \begin{proof} The proof proceeds (the way Dugger presents it, at least) in roughly three steps: \begin{enumerate}% \item Use that $[C^{op}, sSet_{Quillen}]_{proj}$ is in some precise sense the \emph{homotopy-} [[free cocompletion]] of $C$. This means that every functor $\gamma : C \to B$ from a plain category $C$ to a model category $B$ factors in an essentially unique way through the [[Yoneda embedding]] $j : C \to [C^{op},sSet]$ by a [[Quillen adjunction]] \begin{displaymath} (\hat \gamma \dashv R) : B \stackrel{\overset{\hat \gamma}{\leftarrow}} {\underset{R}{\to}} [C^{op}, sSet_{Quillen}]_{proj} \,. \end{displaymath} The detailed definitions and detailed proof of this are discussed at [[(∞,1)-category of (∞,1)-presheaves]]. \item For a given combinatorial model category $B$, choose $C := B_\lambda^{cof}$ the full [[subcategory]] on a [[small set]] (guaranteed to exist since $B$ is [[locally presentable category|locally presentable]]) of cofibrant $\lambda$-[[compact object]]s, for some [[regular cardinal]] $\lambda$, and show that the induced Quillen adjunction \begin{displaymath} B \stackrel{\overset{\hat i}{\leftarrow}}{\underset{R}{\hookrightarrow}} [(B_\lambda^{cof})^{op}, sSet]_{proj} \end{displaymath} induced by the above statement from the inclusion $i : B_\lambda^{cof} \hookrightarrow B$ exhibits $B$ as a homotopy-[[reflective subcategory]] in that the [[derived adjunction counit]] $\hat i \circ Q \circ R \stackrel{\simeq}{\to} Id$ ($Q$ some cofibrant replacement functor) is a [[natural transformation|natural]] [[weak equivalence]] on fibrant objects (recall from [[adjoint functor]] the characterization of adjoints to full and faithful functors). \item Define $S$ to be the set of morphisms in $[(C_\lambda^{cof})^{op}, sSet]$ that the left [[derived functor]] $\hat i \circ Q$ of $\hat i$ (here $Q$ is some cofibrant replacement functor) sends to weak equivalences in $B$. Then form the left [[Bousfield localization of model categories|Bousfield localization]] $L_S [(C_\lambda^{cof})^{op},sSet]_{proj}$ with respect to this set of morphisms and prove that this is [[Quillen equivalence|Quillen equivalent]] to $B$. \end{enumerate} Carrying this program through requires the following intermediate results. First recall from the discussion at [[(∞,1)-category of (∞,1)-presheaves]] that to produce the Quilen adjunction $(\hat i \dashv R)$ from $i$, we are to choose a [[cofibrant resolution]] functor \begin{displaymath} I : C \to [\Delta,B] \end{displaymath} of $i : C= B_\lambda^{cof} \to B$. The [[adjunct]] of this is a functor $\tilde I : C \times \Delta \to B$. For each object $b \in B$ write $(C \times \Delta \downarrow b)$ for the [[slice category]] induced by this functor. \textbf{Lemma} (Dugger, prop. 4.2) For every fibrant object $b \in B$ we have that the [[homotopy colimit]] $hocolim (C \times \Delta \downarrow b) \to B)$ is weakly equivalent to $\hat i \circ Q\circ R (b)$. \textbf{Corollary} (Dugger, cor. 4.4) The induced Quillen adjunction \begin{displaymath} B \stackrel{\leftarrow}{\to} [C^{op}, sSet] \end{displaymath} is a homotopy-reflective embedding precisely if the canonical morphisms \begin{displaymath} hocolim (C \times \Delta \downarrow b) \to b \end{displaymath} are weak equivalences for every fibrant object $b \in B$. \ldots{} \end{proof} Notice that the theorem just mentions plain combinatorial model categories, not [[simplicial model category|simplicial model categories]]. But of course by basic facts of [[enriched category theory]] $Funct(C^{op}, SSet)$ is an [[SSet]]-[[enriched category]] and its projective [[global model structure on functors]] $Func(C^{op}, SSet)_{proj}$ is compatibly a [[simplicial model category]], as are all its [[Bousfield localization of model categories|Bousfield localizations]]. (See [[model structure on simplicial presheaves]] for more details.) Therefore an immediate but very useful corollary of the above statement is \begin{corollary} \label{}\hypertarget{}{} Every combinatorial model category is [[Quillen equivalence|Quillen equivalent]] to one which is \begin{itemize}% \item a [[simplicial model category]] \item a left [[proper model category]]. \end{itemize} \end{corollary} \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} [[!include locally presentable categories - table]] \hypertarget{references}{}\subsection*{{References}}\label{references} Dugger's theorem is due to \begin{itemize}% \item [[Daniel Dugger]], \emph{[[Combinatorial model categories have presentations]]}, Adv. Math. 164 (2001), no. 1, 177-201 (\href{http://arxiv.org/abs/math/0007068}{arXiv:math/0007068}) \end{itemize} based on results in \begin{itemize}% \item [[Dan Dugger]], \emph{[[Universal homotopy theories]]} \end{itemize} The interpretation in terms of [[locally presentable (infinity,1)-categories]] is due to \begin{itemize}% \item [[Jacob Lurie]], \emph{[[Higher Topos Theory]]} \end{itemize} \end{document}