\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{Dwyer-Wilkerson H-space} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{homotopy_theory}{}\paragraph*{{Homotopy theory}}\label{homotopy_theory} [[!include homotopy - contents]] \hypertarget{group_theory}{}\paragraph*{{Group Theory}}\label{group_theory} [[!include group theory - contents]] \hypertarget{exceptional_structures}{}\paragraph*{{Exceptional structures}}\label{exceptional_structures} [[!include exceptional structures -- contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{Cohomology}{Cohomology}\dotfill \pageref*{Cohomology} \linebreak \noindent\hyperlink{construction_as_a_homotopy_colimit}{Construction as a homotopy colimit}\dotfill \pageref*{construction_as_a_homotopy_colimit} \linebreak \noindent\hyperlink{AsA2CompactGroup}{As a 2-compact group}\dotfill \pageref*{AsA2CompactGroup} \linebreak \noindent\hyperlink{weyl_group}{Weyl group}\dotfill \pageref*{weyl_group} \linebreak \noindent\hyperlink{homotopy_coset_space_}{Homotopy coset space $G_3/Spin(7)$}\dotfill \pageref*{homotopy_coset_space_} \linebreak \noindent\hyperlink{RelationtoCo3}{Relation to the Conway group, $Co_3$}\dotfill \pageref*{RelationtoCo3} \linebreak \noindent\hyperlink{RelationToPctomionic3Times3HermitianMatrices}{Relation to octonionic $3 \times 3$ matrix algebra?}\dotfill \pageref*{RelationToPctomionic3Times3HermitianMatrices} \linebreak \noindent\hyperlink{homotopy_representation}{Homotopy representation}\dotfill \pageref*{homotopy_representation} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} The \emph{Dwyer-Wilkerson space} $G_3$ (\hyperlink{DwyerWilkerson93}{Dwyer-Wilkerson 93}) is a [[p-adic completion|2-complete]] [[H-space]], in fact a finite [[loop space]]/[[∞-group]], such that the mod 2 [[cohomology ring]] of its [[classifying space]]/[[delooping]] is the mod 2 [[Dickson invariants]] of rank 4. As such, it is the fifth and last space (see \hyperlink{Cohomology}{below}) in a series of [[∞-groups]] that starts with 4 [[compact Lie groups]], namely with the \href{normed+division+algebra#Automorphisms}{automorphism groups of real normed division algebras}: \begin{tabular}{l|l|l|l|l|l} $n=$&0&1&2&3&4\\ \hline $DI(n)=$&[[trivial group&1]]&[[Z/2]]&[[SO(3)]]&[[G2]]\\ &= Aut(R)&\href{complex+number#AutomorphismsOfComplexNumbersIsZ2}{= Aut(C)}&\href{quaternion#AutomorphismsOfQUatrnionsAlgebraIsSO3}{= Aut(H)}&\href{octonion#AutomorphismsOfOctonionAlgebraIsG2}{= Aut(O)}&\\ \end{tabular} whence the notation ``$G_3$'' (suggested in \hyperlink{Moller95}{Møller 95, p. 5}). While $G_3$ is not a [[compact Lie group]], it is a [[p-compact group|2-compact group]], hence a ``[[homotopy Lie group]]'' (see \hyperlink{AsA2CompactGroup}{below}). The above progression starting with the [[automorphism groups]] of [[real numbers|real]] [[normed division algebras]] suggests that $G_3$ has a geometric or algebraic relevance in a context of [[division algebra and supersymmetry]]. This remains open, but there are speculations, see \hyperlink{RelationToPctomionic3Times3HermitianMatrices}{below}. \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{Cohomology}{}\subsubsection*{{Cohomology}}\label{Cohomology} The [[ordinary cohomology]] of the [[classifying space]]/[[delooping]] $B G_3$ with [[coefficients]] in the [[prime field]] $\mathbb{F}_2$ is, as an [[associative algebra]] over the [[Steenrod algebra]], the ring of mod 2 [[Dickson invariants]] of rank 4. This is the ring of invariants of the natural action of $GL(4, \mathbf{F}_2)$ on the rank 4 polynomial algebra $H^{\ast}((B \mathbf{Z}/2)^4, \mathbf{F}_2)$, a polynomial algebra on classes $c_8$, $c_12$, $c_14$, and $c_15$ with $Sq^4 c_8 = c_{12}$, $Sq^2 c_{12} = c_{14}$, and $Sq^1 c_{14} = c_{15}$. (\hyperlink{DwyerWilkerson93}{Dwyer-Wilkerson 93, Theorem 1.1}) As such, $G_3$ is the last in a series of [[∞-groups]] whose [[classifying spaces]]/[[deloopings]] have as mod 2 [[cohomology ring]] the mod 2 [[Dickson invariants]] for rank $n$, which starts with three ordinary [[compact Lie groups]]: \begin{tabular}{l|l|l|l|l} $n=$&1&2&3&4\\ \hline $DI(n)=$&[[Z/2]]&[[SO(3)]]&[[G2]]&[[G3]]\\ \end{tabular} (\hyperlink{DwyerWilkerson93}{Dwyer-Wilkerson 93, top of p. 38 (2 of 28)}) This means in particular that the cohomology is an [[exterior algebra]] on generators of degree 7, 11, 13, 14 so it's (2-locally) a [[Poincaré duality space]] of [[dimension]] 45. (\ldots{}) \hypertarget{construction_as_a_homotopy_colimit}{}\subsubsection*{{Construction as a homotopy colimit}}\label{construction_as_a_homotopy_colimit} The space $B G_3$ is the 2-completion of the homotopy colimit of a diagram (\hyperlink{Notbohm}{Notbohm 03, Sec. 2}, \hyperlink{Ziemianski}{Ziemianski, 0.2.3}). \hypertarget{AsA2CompactGroup}{}\subsubsection*{{As a 2-compact group}}\label{AsA2CompactGroup} $G_3$ is the only exotic 2-group, or, in other words, the only simple [[p-compact group|2-compact group]] not arising as the 2-completion of a compact connected Lie group (\hyperlink{AndersenGrodal06}{Andersen-Grodal 06}). \hypertarget{weyl_group}{}\subsubsection*{{Weyl group}}\label{weyl_group} The analog of the [[Weyl group]] for $G_3$ is $\mathbb{Z}/2 \times GL(3,\mathbb{F}_2)$. (\hyperlink{DwyerWilkerson93}{Dwyer-Wilkerson 93, middle of p. 38 (2 of 28)}) \hypertarget{homotopy_coset_space_}{}\subsubsection*{{Homotopy coset space $G_3/Spin(7)$}}\label{homotopy_coset_space_} $G_3$ receives a homomorphism from [[Spin(7)]]. The [[homotopy fiber]] of the corresponding [[delooping]] map is a homotopy-[[coset space]] \begin{displaymath} G_3/Spin(7) \end{displaymath} The [[ordinary cohomology]] with [[coefficients]] in the [[prime field]] $\mathbb{F}_2$ of this space \begin{enumerate}% \item is concentrated in even degrees, \item has [[Euler characteristic]] 24. \end{enumerate} (\hyperlink{DwyerWilkerson93}{Dwyer-Wilkerson 93, Theorem 1.8}) \hypertarget{RelationtoCo3}{}\subsubsection*{{Relation to the Conway group, $Co_3$}}\label{RelationtoCo3} $B G_3$ receives a map from $B Co_3$, the [[delooping]] of the [[Conway group]], $Co_3$. This map has the property that it injects the mod two cohomology of $B G_3$ as a subring over which the mod two cohomology of $B Co_3$ is finitely generated as a module (see \hyperlink{Benson94}{Benson 94}). This continues a pattern from $B A_5 \to B SO(3)$ and $B M_{12} \to B G_2$, where $M_{12}$ is a [[Mathieu group]]. For further developments see (\href{{#AschbacherChermak10}}{Aschbacher-Chermak 10}). $G_3$ and $Co_3$ both contain as 2-local subgroups the non-split extension, $(\mathbb{Z}/2)^4.G L(4, \mathbb{F}_2)$. \hypertarget{RelationToPctomionic3Times3HermitianMatrices}{}\subsubsection*{{Relation to octonionic $3 \times 3$ matrix algebra?}}\label{RelationToPctomionic3Times3HermitianMatrices} Since, by the \hyperlink{Cohomology}{above}, $G_3$ is (2-locally) a [[Poincaré duality space]] of [[dimension]] 45, there has been speculation that it might be related to the $8 + 2 \cdot 8 + 3 \cdot 7 = 45$-dimensional algebra \begin{displaymath} Mat^{skher}_{3 \times 3}(\mathbb{O}) \end{displaymath} of skew-hermitian [[matrices]] over the [[octonions]] (\hyperlink{SolomonStancu08}{Solomon-Stancu 08, p. 175}, \hyperlink{Wilson09a}{Wilson 09a, slide 94}, \hyperlink{Benson98}{Benson 98, p. 19}). (Wilson's suggestion appears to arise from his construction of a 3-dimensional octonionic [[Leech lattice]], his representation of its automorphism group, the [[Conway group]] $Co_0$, as right multiplications by $3 \times 3$ matrices over the octonions (\hyperlink{Wilson09b}{Wilson 09b}), and the \hyperlink{RelationtoCo3}{relationship} between the latter's subgroup $Co_3$ and $G_3$.) Incidentally, the algebra of $3\times 3$ [[hermitian matrices]] (as opposed to skew-hermitian) over the octonions \begin{displaymath} Mat^{her}_{3 \times 3}(\mathbb{O}) \; \simeq_{\mathbb{R}} \; \underset{ dim_{\mathbb{R}} = 26 }{ \underbrace{ \mathbb{R}^{9,1} \oplus \mathbf{16} }} \oplus \mathbb{R} \,. \end{displaymath} is the [[exceptional Jordan algebra]] called the \emph{[[Albert algebra]]} (see \href{Albert+algebra#RelationTo10dSuperSpacetime}{there}). \hypertarget{homotopy_representation}{}\subsubsection*{{Homotopy representation}}\label{homotopy_representation} The possibility of there being a faithful 15-dimensional real homotopy representation of $G_3$ is raised in (\hyperlink{BakerBauer}{Baker-Bauer 19, p. 8}). \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} [[!include coset space structure on n-spheres -- table]] \hypertarget{references}{}\subsection*{{References}}\label{references} Due to \begin{itemize}% \item [[William Dwyer]], [[Clarence Wilkerson]], \emph{A new finite loop space at the prime two}, J. Amer. Math. Soc. 6 (1993), 37-64 (\href{https://doi.org/10.1090/S0894-0347-1993-1161306-9}{doi:10.1090/S0894-0347-1993-1161306-9}) \end{itemize} Review: \begin{itemize}% \item [[Jesper Møller]], \emph{Homotopy Lie groups}, Bull. Amer. Math. Soc. (N.S.) 32 (1995) 413-428 (\href{https://arxiv.org/abs/math/9510218}{arXiv:math/9510218}) \item [[Jesper Grodal]], \emph{The Classification of $p$–Compact Groups and Homotopical Group Theory}, Proceedings of the International Congress of Mathematicians, Hyderabad 2010 (\href{https://arxiv.org/abs/1003.4010}{arXiv:1003.4010}, \href{http://web.math.ku.dk/~jg/papers/icm.pdf}{pdf}, [[GrodalpCompactGroups2010.pdf:file]]) \item Dietrich Notbohm, \emph{On the compact 2-group $D I(4)$}, Journal für die reine und angewandte Mathematik (Crelles Journal), Volume 2003, Issue 555, Pages 163–185, (\href{https://pdfs.semanticscholar.org/76ee/dfae66955e452fc20e7ab4a19bd1f6284af4.pdf}{pdf}) \end{itemize} See also \begin{itemize}% \item Martin Bendersky, Donald M. Davis, \emph{$v_1$-periodic homotopy groups of the Dwyer-Wilkerson space} (\href{https://arxiv.org/abs/0706.0993}{arXiv:0706.0993}) \item [[Andrew Baker]], [[Tilman Bauer]], \emph{The realizability of some finite-length modules over the Steenrod algebra by spaces} (\href{https://arxiv.org/abs/1903.10288}{arXiv:1903.10288}) \item Kasper Andersen, [[Jesper Grodal]], \emph{The classification of 2-compact groups}, J. Amer. Math. Soc. 22 (2009), 387-436 (\href{https://arxiv.org/abs/math/0611437}{arXiv:math/0611437}) \item Krzysztof Ziemiaski, \emph{A faithful complex representation of the 2-compact group DI(4)}, (\href{https://www.mimuw.edu.pl/~ziemians/pap/Thesis.pdf}{thesis}) \item David Benson, \emph{Conway’s group $Co_3$ and the Dickson invariants}, Manuscripta Math (1994) 85: 177 (\href{https://eudml.org/doc/156016}{dml:156016}) \item Andrew Baker, Tilman Bauer, \emph{The realizability of some finite-length modules over the Steenrod algebra by spaces}, (\href{https://arxiv.org/abs/1903.10288}{arXiv:1903.10288}) \item , Michael Aschbacher, Andrew Chermak, \emph{A group-theoretic approach to a family of 2-local finite groups constructed by Levi and Oliver}, (\href{http://annals.math.princeton.edu/2010/171-2/p06}{paper}) \end{itemize} Speculation on possible geometric roles of $G_3$: \begin{itemize}% \item Eon Solomon, Radu Stancu, p. 175 of: \emph{Conjectures on finite and p-local groups}, L'Enseignement Mathématique (2) 54 (2008) 171-176 ([[SolomonStancuConjectures.pdf:file]], \href{http://doi.org/10.5169/seals-109929}{doi:10.5169/seals-109929}) \item David Benson, \emph{Cohomology of Sporadic Groups, Finite Loop Spaces, and the Dickson Invariants}, in P. Kropholler, G. Niblo, \& R. Stöhr (Eds.), Geometry and Cohomology in Group Theory (London Mathematical Society Lecture Note Series, pp. 10-23), 1998. Cambridge University Press. \item [[Robert A. Wilson]], Slide 94 of: \emph{A new approach to the Leech lattice}, talk at University of Cambridge, 21st October 2009 (\href{http://www.maths.qmul.ac.uk/~raw/talks_files/Cambridge09.pdf}{slides pdf}) (on an [[octonions|octonionic]] construction of the [[Leech lattice]]) \item [[Robert A. Wilson]], \emph{Conway’s group and octonions}, (\href{http://www.maths.qmul.ac.uk/~raw/pubs_files/octoConway.pdf}{pdf}) \end{itemize} [[!redirects Dwyer-Wilkerson H-spaces]] [[!redirects Dwyer-Wilkerson space]] [[!redirects Dwyer-Wilkerson spaces]] [[!redirects G3]] \end{document}