\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{E-infinity algebra} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{higher_algebra}{}\paragraph*{{Higher algebra}}\label{higher_algebra} [[!include higher algebra - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{realizations}{Realizations}\dotfill \pageref*{realizations} \linebreak \noindent\hyperlink{in_chain_complexes}{In chain complexes}\dotfill \pageref*{in_chain_complexes} \linebreak \noindent\hyperlink{in_topological_spaces}{In topological spaces}\dotfill \pageref*{in_topological_spaces} \linebreak \noindent\hyperlink{in_simplicial_sets}{In simplicial sets}\dotfill \pageref*{in_simplicial_sets} \linebreak \noindent\hyperlink{in_spectra}{In spectra}\dotfill \pageref*{in_spectra} \linebreak \noindent\hyperlink{in_stacks}{In $\infty$-stacks}\dotfill \pageref*{in_stacks} \linebreak \noindent\hyperlink{in_categories}{In $(\infty,n)$-categories}\dotfill \pageref*{in_categories} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} Given a [[symmetric monoidal (infinity,1)-category]] $C$, an \textbf{$E_\infty$-algebra} in $C$ is synonymous with a [[commutative monoid in a symmetric monoidal (infinity,1)-category|commutative monoid]] in $C$. Most often $C$ is the [[(infinity,1)-category of chain complexes]] over a [[field]] or [[commutative ring]], or the [[stable (infinity,1)-category]] of [[spectra]] (see also [[E-infinity ring]]). In terms of [[operads]], an $E_\infty$-algebra is an [[algebra over an operad]] for an [[E-∞ operad]]. \hypertarget{realizations}{}\subsection*{{Realizations}}\label{realizations} \hypertarget{in_chain_complexes}{}\subsubsection*{{In chain complexes}}\label{in_chain_complexes} $E_\infty$-algebras in [[chain complex|chain complexes]] are equivalent to those in abelian [[simplicial group|simplicial groups]]. For details on this statement see [[monoidal Dold-Kan correspondence]] and [[operadic Dold-Kan correspondence]]. The [[singular cohomology]] $H^*(X,\mathbb{Z})$ of a topological space is a graded-commutative algebra over the integers, but the the [[singular cohomology|singular cochain]] complex $C^*(X,\mathbb{Z})$ is not: instead, it is an $E_\infty$-algebra. A concrete construction of an $E_\infty$-algebra structure on [[singular cochains]], and, more generally, [[simplicial cochains]] of a [[simplicial set]] can be found in McClure and Smith \cite{MCO}. Their work gives a precise description of the involved \textbf{sequence operad}, which is an $E_\infty$-operad, as well as its action on [[simplicial cochains]], which involves a generalization of Steenrod's cup-$i$ products. Recall that the cup-1 product controls the noncommutativity of the ordinary [[cup product]]: \begin{displaymath} d(x\cup_1 y)=x\cup y-(-1)^{|x|\cdot|y|}y\cup x. \end{displaymath} It can be defined using a formula similar to the one used for the [[cup product]], and the higher operations also have similar nature. Remarkably, for [[simply connected]] spaces of [[finite type]] this $E_\infty$-algebra knows everything about the [[weak homotopy type]] of $X$. In fact a stronger statement holds: \begin{utheorem} Finite type [[nilpotent spaces]] $X$ and $Y$ are [[weak equivalence|weakly homotopy equivalent]] if and only if the $E_\infty$-algebras $C^*(X,\mathbb{Z})$ and $C^*(Y,\mathbb{Z})$ are quasi-isomorphic. \end{utheorem} This was proved by \hyperlink{Mandell}{Mandell} in 2003. \hypertarget{in_topological_spaces}{}\subsubsection*{{In topological spaces}}\label{in_topological_spaces} \begin{utheorem} A [[connected space]] of the [[homotopy type]] of a [[CW-complex]] with a non-degenerate basepoint that has the [[homotopy type]] of a $k$-fold [[loop space]] for all $k \in \mathbb{N}$ admits the structure of an $E_\infty$-space. \end{utheorem} \hypertarget{in_simplicial_sets}{}\subsubsection*{{In simplicial sets}}\label{in_simplicial_sets} \begin{utheorem} The [[model structure on algebras over an operad]] over [[E-∞ operad]]s in [[Top]] and in [[sSet]] are [[Quillen equivalence|Quillen equivalent]]. \end{utheorem} This is in \hyperlink{BergerMoerdijkHomotopy}{BergerMoerdijk I}, \hyperlink{BergerMoerdijkAlgebras}{BergerMoerdijk II}. \hypertarget{in_spectra}{}\subsubsection*{{In spectra}}\label{in_spectra} An $E_\infty$-algebra in [[spectra]] is an [[E-∞ ring]]. \hypertarget{in_stacks}{}\subsubsection*{{In $\infty$-stacks}}\label{in_stacks} See [[Ek-Algebras]]. \hypertarget{in_categories}{}\subsubsection*{{In $(\infty,n)$-categories}}\label{in_categories} See \emph{[[symmetric monoidal (∞,n)-category]]}. \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[A-∞ algebra]] \item [[Hopf E-∞ algebra]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} \begin{itemize}% \item [[Peter May]], \emph{The geometry of iterated loop spaces} (\href{http://www.math.uchicago.edu/~may/BOOKS/gils.pdf}{pdf}) \end{itemize} $\backslash$bibitem\{MCO\} [[James E. McClure]], [[Jeffrey H. Smith]], \emph{Multivariable cochain operations and little $n$-cubes\_}, \href{https://arxiv.org/abs/math/0106024}{arXiv}, \href{https://doi.org/10.1090/S0894-0347-03-00419-3}{Journal of the AMS 16:3 (2003), 681–704}. \begin{itemize}% \item [[Mike Mandell]], \emph{Cochains and homotopy type}, Publ. Math. IHES (2006) 103: 213--246. (\href{https://arxiv.org/abs/math/0311016}{arXiv}) \end{itemize} \begin{itemize}% \item [[Martin Markl]], Steve Shnider, [[Jim Stasheff]], \emph{Operads in algebra, topology and physics}, Math. Surveys and Monographs \textbf{96}, Amer. Math. Soc. 2002. \end{itemize} In the context of [[(infinity,1)-operad]]s $E_\infty$-algebras are discussed in \begin{itemize}% \item [[Jacob Lurie]], \emph{[[Ek-Algebras]]} \end{itemize} A systematic study of [[model category]] structures on operads and their algebras is in \begin{itemize}% \item [[Clemens Berger]], [[Ieke Moerdijk]], \emph{Axiomatic homotopy theory for operads} Comment. Math. Helv. 78 (2003), 805--831. (\href{http://arxiv.org/abs/math/0206094}{arXiv:math/0206094}) \end{itemize} The induced model structures and their properties on [[algebras over operads]] are discussed in \begin{itemize}% \item [[Clemens Berger]], [[Ieke Moerdijk]], \emph{Resolution of coloured operads and rectification of homotopy algebras} (\href{http://arxiv.org/abs/math/0512576}{arXiv:math/0512576}) \end{itemize} [[!redirects E-infinity-algebra]] [[!redirects E-infinity algebras]] [[!redirects E-infinity-algebras]] [[!redirects E-∞ algebra]] [[!redirects E-∞ algebras]] [[!redirects E-∞-algebra]] [[!redirects E-∞-algebras]] \end{document}