\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{E-theory} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{cohomology}{}\paragraph*{{Cohomology}}\label{cohomology} [[!include cohomology - contents]] \hypertarget{operator_algebra}{}\paragraph*{{Operator algebra}}\label{operator_algebra} [[!include AQFT and operator algebra contents]] \hypertarget{functional_analysis}{}\paragraph*{{Functional analysis}}\label{functional_analysis} [[!include functional analysis - contents]] \hypertarget{noncommutative_geometry}{}\paragraph*{{Noncommutative geometry}}\label{noncommutative_geometry} [[!include noncommutative geometry - contents]] \hypertarget{theory}{}\section*{{$E$-theory}}\label{theory} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{universal_characterization}{Universal characterization}\dotfill \pageref*{universal_characterization} \linebreak \noindent\hyperlink{RelationToKKTheory}{Relation to KK-theory}\dotfill \pageref*{RelationToKKTheory} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \noindent\hyperlink{general}{General}\dotfill \pageref*{general} \linebreak \noindent\hyperlink{relation_to_shape_theory}{Relation to shape theory}\dotfill \pageref*{relation_to_shape_theory} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} \emph{$E$-Theory} is the name of a [[category]] whose [[objects]] are [[C\emph{-algebras]] and whose [[hom-sets]] are homotopy classes of slightly generalized $C*$-homomorphisms, called \emph{[[asymptotic C\emph{-homomorphisms]]\_. These hom-sets have the structure of an [[abelian group]] and are also called the \emph{E-groups} of their arguments. Since under [[Gelfand duality]] [[C}-algebras]] may be thought of as exhibiting [[noncommutative topology]], one also speaks of}[[noncommutative stable homotopy theory]]\_.} This construction may be understood as the universal improvement of [[KK-theory]] under [[excision]] (\hyperlink{Higson90}{Higson 90}). Accordingly, the $E$-groups behave like groups of a [[K-theory]]-like [[generalized cohomology theory]]. In terms of [[noncommutative topology]] (regarding, in view of [[Gelfand duality]], noncommutative [[C\emph{-algebras]] as [[algebras of functions]] on ``noncommutative topological spaces'') one may understand this as dealing with ``locally badly behaved space'' such as certain [[quotients]] of [[foliations]] (\href{ConnesHigson90}{Connes-Higson 90}) in a way that resembles a noncommutative version of [[shape theory]] (\hyperlink{Dadarlat94}{Ddrlat 94}).} \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} First some notation and terminology. For $A \in$ [[C\emph{Alg]], we write} \begin{displaymath} \Sigma A \coloneqq C_0((0,1),A) \end{displaymath} for the $C^\ast$-algebra of continuous $A$-valued functions on the open inverval [[vanishing at infinity]]. This is also called the \emph{suspension} of $A$. For $A,B \in$ [[C\emph{Alg]], write $[A,B]$ for the set of [[homotopy]]-[[equivalence classes]] of [[asymptotic C}-homomorphisms]] $A \to B$. As discussed there \begin{enumerate}% \item there is a natural [[composition operation]] $[A,B] \times [B,C] \to [A,C]$; \item $[A,\Sigma B]$ is naturally an [[abelian group]]. \end{enumerate} Finally, write $\mathcal{K} \in$ [[C\emph{Alg]] for the $C^\ast$-algebra of [[compact operators]] on an infinite-dimensional [[separable Hilbert space]]. For $A \in C^\ast Alg$ the [[tensor product of C}-algebras]] $A \otimes \mathcal{K}$ is also called the \emph{stabilization} of $A$. \begin{defn} \label{}\hypertarget{}{} For $A,B \in$ [[C\emph{Alg]], the \textbf{E-group} of $A$ with [[coefficients]] in $B$ is} \begin{displaymath} E(A,B) \coloneqq [(\Sigma A )\otimes \mathcal{K}, (\Sigma B) \otimes \mathcal{K}] \in Ab \,. \end{displaymath} Under the induced [[composition]] operation this yields an [[additive category]] $E$ whose [[objects]] are [[C\emph{-algebras]], and whose [[hom-objects]] are $E(-,-)$.} \end{defn} \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{universal_characterization}{}\subsubsection*{{Universal characterization}}\label{universal_characterization} E-theory is the [[universal construction|universal]] localization [[C\emph{Alg]] $\to E$ which is homotopy-invariant, stable and preserves [[exact sequences]] in the middle.} (\ldots{}) \hypertarget{RelationToKKTheory}{}\subsubsection*{{Relation to KK-theory}}\label{RelationToKKTheory} Because KK-theory is the universal \emph{split exact} (stable and homotopy-invariant) localization of [[C\emph{Alg]], and E-theory the universal half-exact localization, and since every [[split exact sequence]] is in particular exact, there is a universal [[functor]]} \begin{displaymath} KK \to E \end{displaymath} from the [[KK-theory]] [[homotopy category]] to that of $E$-theory. Restricted to [[nuclear C\emph{-algebras]] this is a [[full and faithful functor]]. (\hyperlink{Higson90}{Higson 90}) (\ldots{})} If in the definition of E-theory by [[asymptotic C\emph{-homomorphisms]] one restricts to those which take values in contractive [[completely positive maps]], then the results is isomorphic to KK-theory again. (K. Thomsen, \hyperlink{Introduction}{Introduction, p. 34}). The above universal functor $KK \to E$ is then just the corresponding [[forgetful functor]].} It follows that the Kasparov product in [[KK-theory]] is equivalently given by the composition of the corresponding completely positive [[asymptotic C\emph{-homomorphisms]].} \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[KK-bootstrap category]] \end{itemize} [[!include noncommutative motives - table]] \hypertarget{references}{}\subsection*{{References}}\label{references} \hypertarget{general}{}\subsubsection*{{General}}\label{general} The idea of E-theory was introduced in \begin{itemize}% \item [[Alain Connes]], [[Nigel Higson]], \emph{D\'e{}formations, morphismes asymptotiques et $K$-th\'e{}orie bivariante}, C. R. Acad. Sci. Paris S\'e{}r. I Math. \textbf{311} (1990), no. 2, 101--106, \href{http://www.ams.org/mathscinet-getitem?mr=1065438}{MR91m:46114}, \href{ftp://ftp.bnf.fr/578/N5781521_PDF_107_112DM.pdf}{pdf} \end{itemize} \begin{itemize}% \item [[Nigel Higson]], \emph{Categories of fractions and excision in KK-theory} J. Pure Appl. Algebra, 65(2):119--138, (1990) (\href{http://www.math.psu.edu/higson/math/Papers_files/Higson%20-%201990%20-%20Categories%20of%20fractions%20and%20excision%20in%20KK-theory.pdf}{pdf}) \end{itemize} Reviews and surveys include \begin{itemize}% \item \emph{Introduction to KK-theory and E-theory}, Lecture notes (Lisbon 2009) (\href{http://oaa.ist.utl.pt/files/cursos/courseD_Lecture4_KK_and_E1.pdf}{pdf slides}) \end{itemize} A standard textbook account is in section 25 of \begin{itemize}% \item [[Bruce Blackadar]], \emph{[[K-Theory for Operator Algebras]]} \end{itemize} The [[stable homotopy theory|stable]] [[homotopy theory]] aspects are further discussed in \begin{itemize}% \item Martin Grensing, \emph{Noncommutative stable homotopy theory} (\href{http://arxiv.org/abs/1302.4751}{arXiv:1302.4751}) \item Rasmus Bentmann, \emph{Homotopy-theoretic E-theory and n-order} (\href{http://arxiv.org/abs/1302.6924}{arXiv:1302.6924}) \end{itemize} See also \begin{itemize}% \item web page of a project \href{http://www.math.ku.dk/~jg/papers/etheory.html}{Noncommutative topology - homotopy functors and E-theory} \item [[Snigdhayan Mahanta]], \emph{Higher nonunital Quillen $K'$-theory, KK-dualities and applications to topological $\mathbb{T}$-duality} \href{http://wwwmath.uni-muenster.de/u/snigdhayan.mahanta/papers/KQ.pdf}{pdf} \end{itemize} \begin{itemize}% \item \href{http://faculty.tcu.edu/epark/papers/ETheory_JFA.pdf}{pdf} \end{itemize} \hypertarget{relation_to_shape_theory}{}\subsubsection*{{Relation to shape theory}}\label{relation_to_shape_theory} Relation to [[shape theory]] is discussed in \begin{itemize}% \item [[Marius Dādārlat]], \emph{Shape theory and asymptotic morphisms for $C^\ast$-algebras}, Duke Math. J. \textbf{73} (3):687-711, 1994, \href{http://www.ams.org/mathscinet-getitem?mr=1262931}{MR95c:46117}, \href{http://www.math.purdue.edu/~mdd/Publications/shape.pdf}{pdf} \end{itemize} \begin{itemize}% \item Vladimir Manuilov, Klaus Thomsen, \emph{Shape theory and extensions of $C^\ast$-algebras}, (\href{http://arxiv.org/abs/1007.1663}{arxiv/1007.1663}) \end{itemize} [[!redirects E-theory]] [[!redirects asymptotic morphism]] [[!redirects asymptotic morphisms]] \end{document}