\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{mathbbol} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{E7} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{exceptional_structures}{}\paragraph*{{Exceptional structures}}\label{exceptional_structures} [[!include exceptional structures -- contents]] \hypertarget{group_theory}{}\paragraph*{{Group Theory}}\label{group_theory} [[!include group theory - contents]] \hypertarget{lie_theory}{}\paragraph*{{Lie theory}}\label{lie_theory} [[!include infinity-Lie theory - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{Definition}{Definition}\dotfill \pageref*{Definition} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{representation}{Representation}\dotfill \pageref*{representation} \linebreak \noindent\hyperlink{SmallestFundamentalRepresentation}{$\mathbf{56}$ -- The smallest fundamental representation}\dotfill \pageref*{SmallestFundamentalRepresentation} \linebreak \noindent\hyperlink{AdjointRepresentation}{$\mathbf{133}$ -- The adjoint representation}\dotfill \pageref*{AdjointRepresentation} \linebreak \noindent\hyperlink{as_part_of_the_ade_pattern}{As part of the ADE pattern}\dotfill \pageref*{as_part_of_the_ade_pattern} \linebreak \noindent\hyperlink{AsUDualityGroup}{As U-Duality group of 4d SuGra}\dotfill \pageref*{AsUDualityGroup} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \noindent\hyperlink{general}{General}\dotfill \pageref*{general} \linebreak \noindent\hyperlink{in_view_of_uduality}{In view of U-duality}\dotfill \pageref*{in_view_of_uduality} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} One of the [[exceptional Lie groups]]. \hypertarget{Definition}{}\subsection*{{Definition}}\label{Definition} Consider the [[vector space]] \begin{displaymath} W \coloneqq \wedge^2 \mathbb{R}^8 \oplus \wedge^2 (\mathbb{R}^8)^\ast \end{displaymath} of [[dimension]] $56$. This is naturally a [[symplectic vector space]] with [[symplectic form]] $\omega$ given by the natural pairing between [[linear 2-forms]] and [[bivectors]]. In addition, consider on this space the quartic form $q \colon W \to \mathbb{R}$ which sends an element $v = (\{v^{a b}, w_{a b}\}) \in W$ to \begin{displaymath} q(v) \coloneqq v^{a b } w_{b c} v^{c d} w_{d a} - \tfrac{1}{4} v^{a b} w_{a b} v^{c d} w_{c d} + \tfrac{1}{96} \left( \epsilon_{a_1 a_2 a_3 a_4 a_5 a_6 a_7 a_8} v^{a_1 a_2} v^{a_3 a_4} v^{a_5 a_6} v^{a_7 a_8} + \epsilon^{a_1 a_2 a_3 a_4 a_5 a_6 a_7 a_8} w_{a_1 a_2} w_{a_3 a_4} w_{a_5 a_6} w_{a_7 a_8} \right) \,. \end{displaymath} Now $E_{7(7)} \subset GL(56,\mathbb{R})$ is the [[subgroup]] of the [[general linear group]] acting on $W$ which preserves both the symplectic form $\omega$ as well as the quartic form $q$. See also \hyperlink{SmallestFundamentalRepresentation}{below}. This presentation is due to \hyperlink{Cartan}{Cartan}, for review see \hyperlink{CremmerJulia79}{Cremmer-Julia 79, appendix B}, \hyperlink{PachecoWaldram08}{Pacheco-Waldram 08, B.1}. A construction via [[octonions]] is due to (\hyperlink{Freudenthal54}{Freudenthal 54}), one via [[quaternions]] is due to (\hyperlink{Wilson14}{Wilson 2014}). \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{representation}{}\subsubsection*{{Representation}}\label{representation} \hypertarget{SmallestFundamentalRepresentation}{}\paragraph*{{$\mathbf{56}$ -- The smallest fundamental representation}}\label{SmallestFundamentalRepresentation} The smallest [[fundamental representation]] of $E_7$ is the defining one (from the definition \hyperlink{Definition}{above}), of [[dimension]] $56$. Under the [[special linear group|special linear]] [[subgroup]] $SL(8,\mathbb{R}) \hookrightarrow E_7$ this decomposes as (e.g. \hyperlink{CacciatoriEtAl10}{Cacciatori et al. 10, section 4}, also \hyperlink{PachecoWaldram08}{Pacheco-Waldram 08, appendix B}) \begin{displaymath} \mathbf{56} \simeq \mathbf{28} \oplus \mathbf{28}^\ast \simeq \wedge^2 \mathbb{R}^8 \oplus \wedge^2 (\mathbb{R}^8)^\ast \,. \end{displaymath} Under the further subgroup inclusion $SL(7,\mathbb{R}) \hookrightarrow SL(8,\mathbb{R}) \hookrightarrow E_7$ this decomposes further as \begin{displaymath} \mathbf{56} \simeq \underset{\simeq \wedge^2 \mathbb{R}^8}{\underbrace{\mathbb{R}^7 \oplus \wedge^2 (\mathbb{R}^7)^\ast}} \oplus \underset{\simeq \wedge^2 (\mathbb{R}^8)^\ast}{\underbrace{\wedge^5 (\mathbb{R}^7)^\ast \oplus \wedge^6 \mathbb{R}^7}} \,, \end{displaymath} where $\wedge^2 (\mathbb{R}^7) \subset \wedge^2 (\mathbb{R}^8)^\ast$ is regarded as the subspace of 2-forms with vanishing 8-components, and where $\wedge^6 \mathbb{R}^7$ is the [[Poincaré duality|Poincaré dual]] to the complementary subspace of $\wedge^2 (\mathbb{R}^8^\ast)$ of 2-forms with non-trivial 8-component. This is due to \hyperlink{Cartan}{Cartan}, for review see \hyperlink{CremmerJulia79}{Cremmer-Julia 79, appendix B}, \hyperlink{PachecoWaldram08}{Pacheco-Waldram 08, B.1}. \hypertarget{AdjointRepresentation}{}\paragraph*{{$\mathbf{133}$ -- The adjoint representation}}\label{AdjointRepresentation} The [[adjoint representation]] $\mathbf{133}$ of $E_7$ decomposes under $SL(8,\mathbb{R})$ as (\hyperlink{PachecoWaldram08}{Pacheco-Waldram 08 (B.7)}) \begin{displaymath} \mathfrak{e}_7 = \mathbf{133} \simeq (\mathbb{R}^8 \otimes (\mathbb{R}^8)^\ast)_{traceless} \oplus \wedge^4 (\mathbb{R}^8)^\ast \,. \end{displaymath} In this decomposition the subspace corresponding to the subalgebra $\mathfrak{su}(8) \hookrightarrow \mathfrak{e}_8$ is the vector space \begin{displaymath} \mathfrak{su}(8) \simeq \mathfrak{so}(8) \oplus (\wedge^4 (\mathbb{R}^8)^\ast)_- \,, \end{displaymath} where the first summand denotes the skew-symmetric matrices, and the second summand the [[Hodge duality|Hodge anti-self dual]] 4-forms (\hyperlink{PachecoWaldram08}{Pacheco-Waldram 08 (B.29) (B.30) and below (2.34)}). Under $GL(7,\mathbb{R}) \hookrightarrow SL(8,\mathbb{R})$ the full adjoint representation decomposes further into (\hyperlink{PachecoWaldram08}{Pacheco-Waldram 08 (B.21)}) \begin{displaymath} \mathbf{133} \simeq \left(\mathbb{R}^7 \otimes (\mathbb{R}^7)^\ast\right) \oplus \left(\wedge^6 \mathbb{R}^7 \oplus \wedge^6 (\mathbb{R}^7)^\ast\right) \oplus \left( \wedge^3 \mathbb{R}^7 \oplus \wedge^3 (\mathbb{R}^7)^\ast \right) \,. \end{displaymath} Here $\wedge^6 (\mathbb{R}^7)^\ast \simeq \mathbb{R}^7$ is the $(-,8)$-component of $\mathbb{R}^7 \oplus (\mathbb{R}^7)^\ast$ and dually, while the $(8,8)$-component carries no information by tracelessness; and $\wedge^3 (\mathbb{R}^7)^\ast$ is the $(-,-,-,8)$-component of $\wedge^4 (\mathbb{R}^8)^\ast$, while $\wedge^3 \mathbb{R}^7$ is the 7-dimensional [[Poincaré duality|Poincaré dual]] of the complement of the $(-,-,-,8)$-component (\hyperlink{PachecoWaldram08}{Pacheco-Waldram 08 (B.22)}). Taken together this means that under $GL(7,\mathbb{R})$ the subspace $\mathbb{su}(8) \hookrightarrow \mathfrak{e}_8$ is that spanned by \begin{enumerate}% \item $\mathfrak{so}(7)$-elements; \item sums of a 3-form with its 8d-Hodge+7d-Poincar\'e{}-dual 3-vector; \item sums of a 6-form with its dual 6-vector \end{enumerate} hence is \begin{displaymath} \mathfrak{su}(8) \simeq \mathfrak{so}(8) \oplus \wedge^3 \mathbb{R}^7 \oplus \wedge^6 \mathbb{R}^7 \,. \end{displaymath} Hence the [[tangent space]] to the [[coset]] $E_{7(7)}/(SU(8)/\mathbb{Z}_2)$ may be identified as \begin{displaymath} \mathfrak{e}_7/\mathfrak{su}(8) \simeq \odot^2 (\mathbb{R}^7)^\ast \oplus \wedge^3 (\mathbb{R}^7)^\ast \oplus \wedge^6 (\mathbb{R}^7)^\ast \,. \end{displaymath} \hypertarget{as_part_of_the_ade_pattern}{}\subsubsection*{{As part of the ADE pattern}}\label{as_part_of_the_ade_pattern} [[!include ADE -- table]] \hypertarget{AsUDualityGroup}{}\subsubsection*{{As U-Duality group of 4d SuGra}}\label{AsUDualityGroup} $E_{7(7)}$ is the [[U-duality]] group (see there) of [[11-dimensional supergravity]] [[KK-compactification|compactified]] on a 7-dimensional fiber to [[4-dimensional supergravity]] (e.g. [[M-theory on G2-manifolds]]). Specifically, (\hyperlink{Hull07}{Hull 07, section 4.4}, \hyperlink{PachecoWaldram08}{Pacheco-Waldram 08, section 2.2}) identifies the [[vector space]] underlying the $SL(7,\mathbb{R})$-decomposition of the \hyperlink{SmallestFundamentalRepresentation}{smallest fundamental representation} \begin{displaymath} \mathbf{56} \simeq \mathbb{R}^7 \oplus \wedge^2 (\mathbb{R}^7)^\ast \oplus \wedge^5 (\mathbb{R}^7)^\ast \oplus \wedge^6 \mathbb{R}^7 \,. \end{displaymath} as the [[exceptional tangent bundle]]-structure to the 7-dimensional fiber space which one obtains as discussed at \emph{\href{M-theory+supersymmetry+algebra#AsAn11DimensionalBoundaryCondition}{M-theory supersymmetry algebra -- As an 11-dimensional boundary condition}}. Here $\mathbb{R}^7$ is the ordinary [[tangent space]] itself, $\wedge^2 (\mathbb{R}^\ast)^7$ is interpreted as the local incarnation of the possible [[M2-brane]] [[charges]], $\wedge^5 (\mathbb{R}^\ast)^7$ the [[M5-brane]] charges and $\wedge^6 \mathbb{R}^7$ as the charges of [[Kaluza-Klein monopoles]]. [[!include U-duality -- table]] \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[exceptional geometry]], [[exceptional generalized geometry]] \item [[G2]], [[F4]], [[E6]], \textbf{E7}, [[E8]], [[E9]], [[E10]], [[E11]], $\cdots$ \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} \hypertarget{general}{}\subsubsection*{{General}}\label{general} The description of the defining fundamental $\mathbf{56}$-representation of $E_{7(7)}$ is due to \begin{itemize}% \item [[Eli Cartan]], Thesis, in Oeuvres compl\`e{}tes T1, Part I, Gauthier-Villars, Paris 1952 \end{itemize} and recalled for instance in \begin{itemize}% \item [[Eugene Cremmer]], [[Bernard Julia]], appendix B of \emph{The $SO(8)$ Supergravity}, Nucl. Phys. B 159 (1979) 141 (\href{http://inspirehep.net/record/140465?ln=en}{spire}) \end{itemize} See also \begin{itemize}% \item Robert B. Brown, \emph{Groups of type $E _7$}, Jour. Reine Angew. Math. 236 (1969), 79-102. \end{itemize} A construction via the [[octonions]] is due to \begin{itemize}% \item [[Hans Freudenthal]], \emph{Beziehungen der $\mathfrak{e}_7$ und $\mathfrak{e}_8$ zur Oktavenebene}, I, II, Indag. Math. 16 (1954), 218--230, 363--368. III, IV, Indag. Math. 17 (1955), 151--157, 277--285. V --- IX, Indag. Math. 21 (1959), 165--201, 447--474. X, XI, Indag. Math. 25 (1963) 457--487 (\href{http://dspace.library.uu.nl/handle/1874/7436}{dspace}) \end{itemize} reviewed in \begin{itemize}% \item [[John Baez]], section 4.5 \emph{\href{http://math.ucr.edu/home/baez/octonions/node18.html}{E7}} of \emph{The Octonions} (\href{http://arxiv.org/abs/math/0105155}{arXiv:math/0105155}) \item Sergio L. Cacciatori, Francesco Dalla Piazza, Antonio Scotti, \emph{E7 groups from octonionic magic square} (\href{http://arxiv.org/abs/1007.4758}{arXiv:1007.4758}) \end{itemize} A [[quaternion|quaternionic]] construction is given in \begin{itemize}% \item [[Robert Wilson]], \emph{A quaternionic approach to $E_7$}, Proc. Amer. Math. Soc. 142 (2014), 867-880. doi:\href{http://dx.doi.org/10.1090/S0002-9939-2013-11838-1}{10.1090/S0002-9939-2013-11838-1}, (\href{http://www.maths.qmul.ac.uk/~raw/pubs_files/E7quat2.pdf}{pre-publication version}), (\href{http://www.maths.qmul.ac.uk/~raw/talks_files/E7quattalk2.pdf}{talk notes}). \end{itemize} See also \begin{itemize}% \item wikipedia, \emph{\href{http://en.wikipedia.org/wiki/E%E2%82%87}{E7}} \end{itemize} \hypertarget{in_view_of_uduality}{}\subsubsection*{{In view of U-duality}}\label{in_view_of_uduality} The hidden [[E7]]-[[U-duality]] symmetry of the [[KK-compactification]] of [[11-dimensional supergravity]] on a 7-dimensional fiber to [[4d supergravity]] was first noticed in (\hyperlink{CremmerJulia79}{Cremmer-Julia 79}) and then expanded on in \begin{itemize}% \item [[Bernard de Wit]], [[Hermann Nicolai]], \emph{D = 11 Supergravity With Local SU(8) Invariance}, Nucl. Phys. B 274, 363 (1986) (\href{http://inspirehep.net/record/227409?ln=en}{spire}), \emph{Local SU(8) invariance in $d = 11$ supergravity} (\href{http://inspirehep.net/record/218601?ln=en}{spire}) \end{itemize} The proposal to make this hidden $E_7$-symmetry manifest via [[exceptional generalized geometry]] is due to \begin{itemize}% \item [[Chris Hull]], \emph{Generalised Geometry for M-Theory}, JHEP 0707:079 (2007) (\href{http://arxiv.org/abs/hep-th/0701203}{arXiv:hep-th/0701203}) \item Paulo Pires Pacheco, [[Daniel Waldram]], appendix B of \emph{M-theory, exceptional generalised geometry and superpotentials} (\href{http://arxiv.org/abs/0804.1362}{arXiv:0804.1362}) \end{itemize} Further discussion includes \begin{itemize}% \item [[Mariana Graña]], [[Jan Louis]], Aaron Sim, [[Daniel Waldram]], section 3.1 of \emph{$E_{7(7)}$ formulation of $N=2$ backgrounds} (\href{http://arxiv.org/abs/0904.2333}{arXiv:0904.2333}) \end{itemize} \end{document}