\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{EHP spectral sequence} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{homotopy_theory}{}\paragraph*{{Homotopy theory}}\label{homotopy_theory} [[!include homotopy - contents]] \hypertarget{homological_algebra}{}\paragraph*{{Homological algebra}}\label{homological_algebra} [[!include homological algebra - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{constructions_of_}{Constructions of $H$}\dotfill \pageref*{constructions_of_} \linebreak \noindent\hyperlink{via_the_james_model}{Via the James model}\dotfill \pageref*{via_the_james_model} \linebreak \noindent\hyperlink{via_pushoutpullback_comparisons}{Via pushout/pullback comparisons}\dotfill \pageref*{via_pushoutpullback_comparisons} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} The \emph{EHP spectral sequence} (we follow \hyperlink{Mahowald85}{Mahowald 85}) is the [[spectral sequence]] for computation of [[homotopy groups of spheres]] induced from the [[filtration]] of the underlying homotopy type $\Omega^\infty \Sigma^\infty S^0 = \Omega^\infty \mathbb{S}$ of the [[sphere spectrum]] by [[suspensions]] (German: \emph{E}inh\"a{}ngung): \begin{displaymath} \Omega^n S^n \stackrel{E}{\longrightarrow} \Omega^{n+1} S^{n+1} \,. \end{displaymath} More concretely, (\hyperlink{James57}{James 57}) constructed maps \begin{displaymath} \Omega S^n \stackrel{H}{\longrightarrow} \Omega S^{2n-1} \end{displaymath} (for \emph{H}opf as in [[Hopf invariant]]) and showed that [[p-localization|2-locally]] these fit with $E$ into [[homotopy fiber sequences]] \begin{displaymath} \Omega^{n+2} S^{2n+1} \stackrel{P}{\longrightarrow} \Omega^n S^n \stackrel{E}{\longrightarrow} \Omega^{n+1} S^{n+1} \stackrel{H}{\longrightarrow} \Omega^{n+1}S^{2n+1} \,. \end{displaymath} (Here $P$ is by definition the [[homotopy fiber]] of $E$, the notation refers to \emph{[[Whitehead product]]}.) This ``EHP-[[long homotopy fiber sequence]]'' gives rise to the corresponding [[long exact sequence of homotopy groups]] and so to an [[exact couple]] of the form \begin{displaymath} \itexarray{ \underset{s,t}{\oplus} \pi_{s+t}(\Omega^{s+1}S^{s+1}) && \stackrel{i}{\longrightarrow} && \pi_{s+t}(\Omega^{s+1}S^{s+1}) \\ & \nwarrow && \swarrow \\ && \underset{s,t}{\oplus} \pi_{t+s}(\Omega^{s+1}S^{2s+1}) } \,. \end{displaymath} The corresponding [[spectral sequence]] is the EHP spectral sequence proper. It converges, 2-locally, to the [[stable homotopy groups of spheres]], with $E_1$-page given by \begin{displaymath} E^{k,n}_1 = \pi_{k+n}(S^{2n-1}) \;\Rightarrow\; \pi_\bullet^{\mathbb{S}} \,. \end{displaymath} For more general [[prime numbers]] than just 2, (\hyperlink{Toda62}{Toda 62}) found analogous fibrations, which hence give EHP spectral sequences for general $p$. The EHP spectral sequence is often used used in the context of the [[Adams-Novikov spectral sequence]] for [[p-localization]] at some prime $p$. \hypertarget{constructions_of_}{}\subsection*{{Constructions of $H$}}\label{constructions_of_} For James' fiber sequence, the essential property required of $H$ is to realize the isomorphism \begin{displaymath} (the\:map\:H)^{cohomology\:pullback} : H^{2n}(\Omega\mathbb{S}^{2n+1})\overset{\sim}{\to} H^{2n}(\Omega \mathbb{S}^{n+1}) . \end{displaymath} The remaining corollaries then follow using the fact cohomology pullback is a ring homomorphism, and the $mod 2$ [[Leray-Serre spectral sequence]]. \hypertarget{via_the_james_model}{}\subsubsection*{{Via the James model}}\label{via_the_james_model} Using the James model of $\Omega\Sigma X$ as a quotient space of $colim_n X^n$, a candidate $H$ is constructed by recursion: \begin{displaymath} H([x_0 , \dots, x_{n+1}]) = H([x_0,\dots,x_n]) \# ([x_0 \wedge x_{n+1} , \dots , x_n\wedge x_{n+1}]) \end{displaymath} where $\#$ denotes concatenation and $\wedge$ [[smash product]]. One checks that the ordering of product terms $x_i\wedge x_j$ w.r.t. $x_k\wedge x_l$ depends only on the relative orders of $i,j,k,l$, so that $H$ is well-defined on the quotient space $\Omega\Sigma X \to \Omega \Sigma(X\wedge X)$. In particular, the restriction to $J_2 X$ factors through $X\wedge X \to \Omega\Sigma X\wedge X$ as the cofiber of the inclusion $X \to J_2 X$. In the case $X\simeq \mathbb{S}^n$, the desired cohomology isomorphism is immediate. \hypertarget{via_pushoutpullback_comparisons}{}\subsubsection*{{Via pushout/pullback comparisons}}\label{via_pushoutpullback_comparisons} Starting with the three-legged cospan $X \stackrel{\longrightarrow}{\stackrel{\longrightarrow}{\longrightarrow}} *$, construct the cube of all pushouts \begin{displaymath} \itexarray{ X & & & \to & & & * \\ & \searrow & & & & \swarrow \\ & & * & \to & \Sigma X \\ \downarrow & & \downarrow & & \downarrow & & \downarrow \\ & & \Sigma X & \to & \Sigma X \vee \Sigma X \\ & \nearrow & & & & \nwarrow \\ * & & & \to & & & \Sigma X } \end{displaymath} Construct pullbacks in some pair of parallel squares, and compare them by naturality \begin{displaymath} \itexarray{ \Omega\Sigma X & & & \to & & & * \\ & \searrow & & & & \swarrow \\ & & \Omega((\Omega\Sigma X)\star(\Omega\Sigma X)) & \to & \Sigma X \\ \downarrow & & \downarrow & & \downarrow & & \downarrow \\ & & \Sigma X & \to & \Sigma X \vee \Sigma X \\ & \nearrow & & & & \nwarrow \\ * & & & \to & & & \Sigma X } \end{displaymath} where $\star$ is [[join|reduced join]]. On the other hand, the natural transformations $\Sigma\Omega \to 1$ give natural maps, e.g. \begin{displaymath} \Omega( ev \circ \tau \circ ev ) : \Omega((\Omega\Sigma X) \star (\Omega\Sigma X)) \to \Omega( X \star X) . \end{displaymath} The composite \begin{displaymath} \Omega \Sigma X \to \Omega((\Omega\Sigma X)\star(\Omega\Sigma X)) \to \Omega(X\star X) \end{displaymath} is a candidate $H$. \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item the [[Freudenthal suspension theorem]] may be obtained from the EHP spectral sequence; \item the [[Goodwillie spectral sequence]] of the identity functor at the point also computes homotopy groups of spheres, the interplay of the two is discussed in (\hyperlink{Behrens10}{Behrems 10}) \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} Original articles include \begin{itemize}% \item [[Ioan Mackenzie James]], \emph{Reduced product spaces}, Ann. of Math. (2) 62 (1955), 170-197. \item [[Ioan Mackenzie James]], \emph{On the Suspension Sequence}, Annals of Mathematics Second Series, Vol. 65, No. 1 (Jan., 1957), pp. 74-107 (\href{http://www.jstor.org/stable/1969666}{jstor}) \item [[Hiroshi Toda]], \emph{Composition methods in homotopy groups of spheres}, Princeton University Press (1962) \item [[Mark Mahowald]], \emph{Lin's theorem and the EHP sequence}. Conference on algebraic topology in honor of [[Peter Hilton]], Contemp. Math. 37 (1985), 115--119. Amer. Math. Soc., Providence, RI. \item [[Marcel Bökstedt]], Anne Marie Svane, \emph{A generalization of the stable EHP spectral sequence} (\href{http://arxiv.org/abs/1208.3938}{arXiv:1208.3938}) \end{itemize} Relation to the [[Goodwillie spectral sequence]] is discussed in \begin{itemize}% \item [[Mark Behrens]], \emph{The Goodwillie tower and the EHP sequence} (\href{http://arxiv.org/abs/1009.1125}{arXiv:1009.1125}) \end{itemize} An algebraic version of the EHP spectral sequence for the [[Lambda-algebra]] and used for computation of the second page of the [[classical Adams spectral sequence]] (the \emph{[[Curtis algorithm]]}), is discussed in \begin{itemize}% \item [[Stanley Kochman]], around prop. 5.2.6 of \emph{[[Bordism, Stable Homotopy and Adams Spectral Sequences]]}, AMS 1996 \end{itemize} Review includes \begin{itemize}% \item [[Mark Mahowald]], [[Doug Ravenel]], section 7 of \emph{Towards a Global Understanding of the Homotopy Groups of Spheres} (\href{http://www.math.rochester.edu/people/faculty/doug/mypapers/global.pdf}{pdf}) \item [[Doug Ravenel]], chapter 1, section 5 of \emph{[[Complex cobordism and stable homotopy groups of spheres]]} \item [[eom]], \emph{\href{https://www.encyclopediaofmath.org/index.php/EHP_spectral_sequence}{EHP spectral sequence}} \item Wikipedia, \emph{\href{http://en.wikipedia.org/wiki/EHP_spectral_sequence}{EHP spectral sequence}} \end{itemize} \end{document}