\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{ETCS} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{topos_theory}{}\paragraph*{{Topos Theory}}\label{topos_theory} [[!include topos theory - contents]] \hypertarget{foundations}{}\paragraph*{{Foundations}}\label{foundations} [[!include foundations - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{a_constructive_view}{A constructive view}\dotfill \pageref*{a_constructive_view} \linebreak \noindent\hyperlink{a_contemporary_perspective}{A contemporary perspective}\dotfill \pageref*{a_contemporary_perspective} \linebreak \noindent\hyperlink{ExpositionByTrimble}{Todd Trimble's exposition of ETCS}\dotfill \pageref*{ExpositionByTrimble} \linebreak \noindent\hyperlink{related_entries}{Related entries}\dotfill \pageref*{related_entries} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} The \textbf{Elementary Theory of the Category of Sets} , or \emph{ETCS} for short, is an axiomatic formulation of [[set theory]] in a [[category theory|category-theoretic]] spirit. As such, it is the prototypical [[structural set theory]]. Proposed shortly after [[ETCC]] in (\hyperlink{Lawvere64}{Lawvere 64}) it is also the paradigm for a [[foundations|categorical foundation]] of mathematics.\footnote{For a comparative discussion of its virtues as foundation see [[foundations of mathematics]] , the \hyperlink{ExpositionByTrimble}{texts by Todd Trimble} or the informative paper by \hyperlink{McLarty04}{McLarty (2004)}.} The theory intends to capture in an invariant way the notion of a (constant) \emph{`abstract set'} whose elements lack internal structure and whose only external property is cardinality with further external relations arising from \emph{mappings}. The membership relation is \emph{local} and \emph{relative} i.e. membership is meaningful only between an element of a set and a subset of the very same set. (See \hyperlink{Lawvere76}{Lawvere (1976, p.119)} for a detailed description of the notion `abstract set'.\footnote{It has been pointed out by John Myhill that Cantor's concept of `cardinal' as a set of abstract units should be viewed as a structural set theory and a precursor to Lawvere's concept of an `abstract set'. This view is endorsed and expanded in \hyperlink{Lawvere94}{Lawvere 1994}.} \footnote{[[Richard Dedekind| R. Dedekind's]] views are also anticipating `abstract sets' e.g. Bernstein reports in Dedekind's works vol.3 (1932, p.449) that Dedekind gave as his intuition of a set: ``a closed bag, containing determinate things that one can not see and of which one knows nothing beyond their existence and determinateness''.} \footnote{The first axiomatic set theory without primitive membership relation $\in$ was presumably proposed by A. Schoenflies in 1920: he modeled elements of sets as indecomposable subsets. See A. Schoenflies, \emph{Zur Axiomatik der Mengenlehre} , Math. Ann. \textbf{83} (1921) pp.173-200; and \emph{Bemerkung zur Axiomatik der Gr\"o{}ssen und Mengen} , Math. Ann. \textbf{85} (1922) pp.60-64.} \footnote{The first axiomatic set theory based on the notion of function was [[John von Neumann|von Neumann]]`s 1925 version of what later became the set based [[NBG]] theory of classes.} ) More in detail, ETCS is a [[first-order theory]] axiomatizing [[elementary toposes]] and specifically those which are [[well-pointed topos|well-pointed]], have a [[natural numbers object]] and satisfy the [[axiom of choice]]. The theory omits the [[axiom of replacement]], however. The idea is, first of all, that much of traditional mathematics naturally takes place ``[[internal logic|inside]]'' such a topos of \emph{constant} sets, and second that this perspective generalizes beyond ETCS proper to toposes of \emph{variable} and \emph{cohesive} sets by varying the axioms: for instance omitting the [[well-pointed topos|well-pointedness]] and the [[axiom of choice]] but adding the [[Kock-Lawvere axiom]] gives a [[smooth topos]] inside which [[synthetic differential geometry]] takes place. That is, ETCS locates the category of sets by the well-pointedness axiom as the discrete zero point on a `continuous' range of toposes eligible for foundations. In particular, whereas ZF mainly provides `substance' for mathematics, ETCS lives as a special type of form within the continuum of mathematical form itself. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} The axioms of ETCS can be summed up in one sentence as: \begin{defn} \label{}\hypertarget{}{} The [[Set|category of sets]] is [[generalized the|the]] [[topos]] which \begin{enumerate}% \item is a [[well-pointed topos]] \item has a [[natural numbers object]] \item and satisfies the [[axiom of choice]]. \end{enumerate} \end{defn} For more details see \begin{itemize}% \item [[fully formal ETCS]]. \end{itemize} \hypertarget{a_constructive_view}{}\subsection*{{A constructive view}}\label{a_constructive_view} [[Erik Palmgren]] (\hyperlink{Palmgren}{Palmgren 2012}) has a [[constructive mathematics|constructive]] [[predicative mathematics|predicative]] variant of ETCS, which can be summarized as: $Set$ is a [[well-pointed topos|well-pointed]] $\Pi$-[[Π-pretopos|pretopos]] with a [[NNO]] and [[enough projectives]] (i.e. [[COSHEP]] is satisfied). Here ``well-pointed'' must be taken in its constructive sense, as including that the [[terminal object]] is indecomposable and projective. \hypertarget{a_contemporary_perspective}{}\subsection*{{A contemporary perspective}}\label{a_contemporary_perspective} Modern mathematics with its emphasis on concepts from [[homotopy theory]] would more directly be founded in a similar spirit by an axiomatization not just of [[elementary toposes]] but of [[elementary (∞,1)-toposes]]. This is roughly what [[univalence|univalent]] [[homotopy type theory]] accomplishes -- for more on this see at \emph{\href{relation+between+type+theory+and+category+theory#HomotopyWithUnivalence}{relation between type theory and category theory -- Univalent HoTT and Elementary infinity-toposes}}. Instead of increasing the [[higher category theory|higher categorical dimension]] [[(n,r)-category|(n,r)]] in the first argument, one may also, in this context of elementary foundations, consider raising the second argument. The case $(2,2)$ is the elementary theory of the 2-category of categories ([[ETCC]]). \hypertarget{ExpositionByTrimble}{}\subsection*{{Todd Trimble's exposition of ETCS}}\label{ExpositionByTrimble} [[Todd Trimble]] has a series of expository writings on ETCS which provide a very careful introduction and at the same time a wealth of useful details. \begin{itemize}% \item Todd Trimble, \emph{ZFC and ETCS: Elementary Theory of the Category of Sets} ([[Trimble on ETCS I|nLab entry]], \href{http://topologicalmusings.wordpress.com/2008/09/01/zfc-and-etcs-elementary-theory-of-the-category-of-sets/}{original blog entry}) \item Todd Trimble, \emph{ETCS: Internalizing the logic} ([[Trimble on ETCS II|nLab entry]], \href{http://topologicalmusings.wordpress.com/2008/09/10/etcs-internalizing-the-logic/}{original blog entry}) \item Todd Trimble, \emph{ETCS: Building joins and coproducts} ([[Trimble on ETCS III|nLab entry]], \href{http://topologicalmusings.wordpress.com/2008/12/15/etcs-building-joins-and-coproducts/}{original blog entry}) \end{itemize} \hypertarget{related_entries}{}\subsection*{{Related entries}}\label{related_entries} \begin{itemize}% \item [[fully formal ETCS]] \item [[structural set theory]] \item [[ZFC|Zermelo Fraenkel set theory]] \item [[Cohesive Toposes and Cantor's ``lauter Einsen'']] \item [[axiom of replacement]] \item [[ETCC]] \item [[practical foundations of mathematics]] \item [[foundations of mathematics]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} ETCS grew out of Lawvere's experiences of teaching undergraduate foundations of analysis at Reed college in 1963 and was originally published in \begin{itemize}% \item [[William Lawvere]], \emph{An elementary theory of the category of sets} , Proceedings of the National Academy of Science of the U.S.A \textbf{52} pp.1506-1511 (1964). (\href{http://www.ncbi.nlm.nih.gov/pmc/articles/PMC300477/pdf/pnas00186-0196.pdf}{pdf}) \end{itemize} A more or less contemporary review is \begin{itemize}% \item C.C. Elgot, \emph{Review}, JSL \textbf{37} no.1 (1972) pp. 191-192. \end{itemize} A longer version of Lawvere's 1964 paper appears in \begin{itemize}% \item [[William Lawvere]], [[Colin McLarty]], \emph{An elementary theory of the category of sets (long version) with commentary} , Reprints in Theory and Applications of Categories \textbf{11} (2005) pp. 1-35. (\href{http://tac.mta.ca/tac/reprints/articles/11/tr11abs.html}{TAC}) \end{itemize} An undergraduate set-theory textbook using it is \begin{itemize}% \item [[William Lawvere]], [[Robert Rosebrugh]], \emph{[[Sets for Mathematics]]} , CUP 2003. (\href{http://books.google.de/books?id=h3_7aZz9ZMoC&pg=PP1&dq=sets+for+mathematics}{web}) \end{itemize} Lawvere explains in detail his views on constant and variable `abstract sets' on pp.118-128 of \begin{itemize}% \item [[William Lawvere]], \emph{Variable Quantities and Variable Structures in Topoi} , pp.101-131 in Heller, Tierney (eds.), \emph{Algebra, Topology and Category Theory: a Collection of Papers in Honor of Samuel Eilenberg} , Academic Press New York 1976. \end{itemize} See also ch. 2,3 of \begin{itemize}% \item [[William Lawvere]], \emph{Variable Sets Entendu and Variable Structure in Topoi} , lecture notes University of Chicago 1975. \end{itemize} On the anticipation of `abstract sets' in [[Georg Cantor|Cantor]]: \begin{itemize}% \item [[William Lawvere]], \emph{[[Cohesive Toposes and Cantor's ``lauter Einsen'']]}, Philosophia Mathematica \textbf{2} no.3 (1994) pp.5-15. ([[LawvereCohesiveToposes.pdf:file]]) \end{itemize} A short overview article on ETCS: \begin{itemize}% \item [[Tom Leinster]], \emph{Rethinking set theory} \href{http://arxiv.org/abs/1212.6543}{arXiv}. \end{itemize} An insightful and non-partisan view of ETCS can be found in a section of: \begin{itemize}% \item [[Andreas Blass]], Yuri Gurevich, \emph{Why Sets ?} , Bull. Europ. Assoc. Theoret. Comp. Sci. \textbf{84} (2004) 139-156. (\href{http://www.math.lsa.umich.edu/~ablass/set.pdf}{draft}) \end{itemize} An extended discussion from a philosophical perspective is in \begin{itemize}% \item [[Colin McLarty]], \emph{Exploring Categorical Foundations} , Phil. Math. \textbf{12} no.3 (2004) 37-53. \end{itemize} For a more recent review from a critical perspective containing additional recent references see \begin{itemize}% \item [[Solomon Feferman]], \emph{Foundations of Unlimited Category Theory: What Remains to be Done} , Review of Symbolic Logic \textbf{6} no.1 (2013) 6-15. (\href{http://math.stanford.edu/~feferman/papers/FCT-RSL-2013.pdf}{pdf}) \end{itemize} An informative discussion of the pros and cons of Lawvere's approach can be found in \begin{itemize}% \item [[Jean-Pierre Marquis]], \emph{Kreisel and Lawvere on Category Theory and the Foundations of Mathematics} . (\href{http://www.math.mcgill.ca/rags/seminar/Marquis_KreiselLawvere.pdf}{pdf-slides}) \end{itemize} Palmgren's ideas can be found here: \begin{itemize}% \item [[Erik Palmgren]], \emph{Constructivist and Structuralist Foundations: Bishop's and Lawvere's Theories of Sets} , Ann. Pure. App. Logic \textbf{163} no.10 (2012) 1384-1399. (\href{http://www.math.uu.se/~palmgren/cetcs.pdf}{pdf}) \end{itemize} For the relation between the theory of well-pointed toposes and \textbf{weak Zermelo set theory} as elucidated by work of [[Julian Cole|J. Cole]], [[Barry Mitchell]], and [[Gerhard Osius|G. Osius]] in the early 1970s see \begin{itemize}% \item [[Peter Johnstone]], \emph{Topos Theory} , Academic Press New York 1977 (Dover reprint 2014). (sections 9.2-3) \item [[Barry Mitchell]], \emph{Boolean Topoi and the Theory of Sets} , JPAA \textbf{2} (1972) pp.261-274. \item [[Gerhard Osius]], \emph{Categorical Set Theory: A Characterization of the Category of Sets}, JPAA \textbf{4} (1974) 79-119. \end{itemize} [[!redirects ETCS]] [[!redirects etcs]] [[!redirects elementary theory of the category of sets]] \end{document}