\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{Eilenberg-Mac Lane object} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{topos_theory}{}\paragraph*{{$(\infty,1)$-Topos Theory}}\label{topos_theory} [[!include (infinity,1)-topos - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{in_}{In $Top$}\dotfill \pageref*{in_} \linebreak \noindent\hyperlink{in_sheaf_toposes}{In $(\infty,1)$-sheaf $(\infty,1)$-toposes}\dotfill \pageref*{in_sheaf_toposes} \linebreak \noindent\hyperlink{cohomology}{Cohomology}\dotfill \pageref*{cohomology} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} The notion of \emph{Eilenberg--Mac Lane object} in an [[(∞,1)-topos]] or [[stable (∞,1)-category]] generalizes the notion of [[Eilenberg?Mac Lane space]] from the [[(∞,1)-topos]] [[Top]] of [[topological space]]s or the [[stable (∞,1)-category]] of [[spectrum|spectra]]: it is an object $\mathbf{B}^n A$ obtained from an abelian [[group object]] $A$ by [[delooping]] that $n$ times. An object that is both $n$-[[truncated]] as well as $n$-connected. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} \begin{udefn} Let $\mathbf{H}$ be an [[(∞,1)-topos]]. For $n \in \mathbb{N}$ an \textbf{Eilenberg-MacLane object} $X$ of degree $n$ \begin{itemize}% \item a [[pointed object]] $* \to X \in \mathbf{H}$ \item which is both $n$-[[n-connective|connective]] as well as $n$-[[truncated]]. \end{itemize} \end{udefn} This appears as [[Higher Topos Theory|HTT, def. 7.2.2.1]] \begin{uremark} If one drops the condition that $X$ has a global point, then this is the definition of [[∞-gerbe]]s. \end{uremark} \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} The next proposition asserts that Eilenberg-MacLane objects defined this way are shifted [[group object in an (∞,1)-category|(∞,1)-categorical group objects]]: \begin{uprop} For $\mathbf{H}$ an [[(∞,1)-topos]], $\mathbf{H}_*$ its [[(∞,1)-category]] of [[pointed object]]s, $Disc(\mathbf{H})$ the full sub-[[(∞,1)-category]] on discrete objects (0-[[truncated]] objects) and $n \in \mathbb{N}$, write \begin{displaymath} \pi_n : \mathbf{H}_* \to Disc(\mathbf{H}_*) \end{displaymath} for the [[(∞,1)-functor]] that assigns the $n$-th [[homotopy groups in an (∞,1)-topos|categorical homotopy groups]]. \begin{itemize}% \item For $n = 0$ this establishes an equivalence between the full subcategory on degree 0 Eilenberg-MacLane objects and [[pointed object]]s of $Disc(\mathbf{H})$; moreover, the restriction $\pi_0:Disc(\mathbf{H}_*)\to Disc(\mathbf{H}_*)$ is equivalent to the identity. \item For $n = 1$ this establishes an equivalence between the full subcategory on degree 1 Eilenberg-MacLane objects and the category of [[group object in an (∞,1)-category|group objects]] in $Disc(\mathbf{H})$. \item For $n \geq 2$ this establishes an equivalence between the full subcategory on degree $n$ Eilenberg-MacLane objects and the category of commutative [[group object in an (∞,1)-category|group objects]] in $Disc(\mathbf{H})$. \end{itemize} \end{uprop} \begin{proof} This is [[Higher Topos Theory|HTT, prop. 7.2.2.12]]. \end{proof} \begin{udef} For $\mathbf{H}$ an [[(∞,1)-topos]] and $n \in \mathbb{N}$ write $K(-,n)$ for [[generalized the|the]] homotopy inverse to the equivalence induced by $\pi_n$ by the above proposition. For $A \in Disc(\mathbf{H})$ an (abelian) group object we say that \begin{displaymath} K(A,n) \in \mathbf{H} \end{displaymath} is the degree $n$-Eilenberg-MacLane object of $A$. \end{udef} \begin{uprop} We have that \begin{displaymath} K(A,n) \simeq \mathbf{B}^n A \end{displaymath} is [[generalized the|the]] $n$-fold [[delooping]] of the discrete group object $A$. \end{uprop} \begin{proof} \begin{quote}% check \end{quote} The [[homotopy groups in an (∞,1)-topos|categorical homotopy groups]] are defined in terms of the canonical [[power]]ing of $\mathbf{H}$ over [[∞Grpd]] \begin{displaymath} (-)^{(-)} : \infty Grpd \times \mathbf{H} \to \mathbf{H} \,. \end{displaymath} For fixed [[∞-groupoid]] $K$ this \begin{displaymath} (-)^{K} : \mathbf{H} \to \mathbf{H} \,. \end{displaymath} preserves $(\infty,1)$-[[limit]]s and hence [[pullback]]s. It follows that the categorical homotopy groups of the [[loop space object]] $\Omega K(A,n)$ are those of $K(A,n)$, shifted down by one degree. By the above proposition on the equivalence between Eilenberg-MacLane objects and group objects, this identifies $\Omega K(A,n) \simeq K(A,n-1)$. \end{proof} \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \hypertarget{in_}{}\subsubsection*{{In $Top$}}\label{in_} In the archetypical [[(∞,1)-topos]] [[Top]]$\simeq$ [[∞Grpd]] the notion of Eilenberg-MacLane object reduces to the traditional notion of [[Eilenberg-MacLane space]]. \hypertarget{in_sheaf_toposes}{}\subsubsection*{{In $(\infty,1)$-sheaf $(\infty,1)$-toposes}}\label{in_sheaf_toposes} Recall that an [[(∞,1)-category of (∞,1)-sheaves|(∞,1)-sheaf]]/[[∞-stack]] [[(∞,1)-topos]] $\mathbf{H} = Sh_{(\infty,1)}(C)$ may be [[presentable (∞,1)-category|presented]] by the [[model structure on simplicial sheaves]] on $C$. In terms of this model the Eilenberg-Mac Lane objects $K(A,n) \in \mathbf{H}$ (for abelian $A$) are the \textbf{Eilenberg-MacLane [[sheaf|sheaves]]} of [[abelian sheaf cohomology]] theory. Under the [[Dold?Kan correspondence]] \begin{displaymath} N : sAb \stackrel{\leftarrow}{\to} Ch_+ : \Gamma \end{displaymath} [[chain complex]]es $A[n]$ of abelian groups concentrated in degree $n$ map into [[simplicial set]]s \begin{displaymath} K(A,n) := \Gamma(A[n]) \end{displaymath} and these to the corresponding constant simplicial sheaves on the [[site]] $C$, that we denote by the same symbol, for convenience. Under the equivalence \begin{displaymath} \mathbf{H} = Sh_{(\infty,1)}(C) \simeq (sSh(C)_{loc})^\circ \end{displaymath} of $\mathbf{H}$ with the [[Kan complex]]-enriched full subcategory of $sSh(C)$ on fibrant cofibrant objects, this identifies the fibrant reeplacement -- the [[∞-stackification]] -- of $\Gamma(A[n])$ with the Eilenberg-MacLane object in $\mathbf{H}$. \hypertarget{cohomology}{}\subsection*{{Cohomology}}\label{cohomology} The notion of [[cohomology]] in the [[(∞,1)-topos]] $\mathbf{H}$ with coefficients in an object $\mathcal{A} \in \mathbf{H}$ is often taken to be restricted to the case where $\mathcal{A}$ is an Eilenberg-MacLane object. For $A \in Disc(\mathbf{A})$ an abelian group object, and $n \in \mathbb{N}$, the degree $n$-cohomology of an object $X \in \mathbf{H}$ is the cohomology with coefficients in $K(A,n)$: \begin{displaymath} H^n(X, A) := H(X, K(A,n)) := \pi_0 \mathbf{H}(X, K(A,n)) \,. \end{displaymath} \hypertarget{references}{}\subsection*{{References}}\label{references} The general discussion of Eilenberg-MacLane objects is in section 7.2.2 of \begin{itemize}% \item [[Jacob Lurie]], \emph{[[Higher Topos Theory]]} \end{itemize} For a discussion of Eilenberg-MacLane objects in the context of the [[model structure on simplicial presheaves]] see top of page 4 of \begin{itemize}% \item [[Rick Jardine]], \emph{Fields Lectures: Simplicial Presheaves} (\href{http://www.math.uwo.ca/~jardine/papers/Fields-01.pdf}{pdf}) \end{itemize} Discussion in [[equivariant homotopy theory]] (see also at \emph{[[Bredon cohomology]]}) is in \begin{itemize}% \item \{Lewis92\} L. G. Lewis, \emph{Equivariant Eilenberg-MacLane spaces and the equivariant Seifert-van Kampen suspension theorems}, Topology Appl., 48 (1992), no. 1, pp. 25--61. \end{itemize} Formalization in [[homotopy type theory]] is in \begin{itemize}% \item [[Dan Licata]], [[Eric Finster]], \emph{Eilenberg-MacLane spaces in homotopy type theory}, LICS 2014 (\href{http://dlicata.web.wesleyan.edu/pubs/lf14em/lf14em.pdf}{pdf text}, \href{https://github.com/dlicata335/hott-agda/blob/master/homotopy/KGn.agda}{Agda HoTT code}, \href{http://homotopytypetheory.org/2014/04/15/eilenberg-maclane-spaces-in-hott/}{web discussion}) \end{itemize} [[!redirects Eilenberg-MacLane object]] [[!redirects Eilenberg?MacLane object]] [[!redirects Eilenberg--MacLane object]] [[!redirects Eilenberg-Mac Lane object]] [[!redirects Eilenberg?Mac Lane object]] [[!redirects Eilenberg--Mac Lane object]] [[!redirects Eilenberg-MacLane objects]] [[!redirects Eilenberg?MacLane objects]] [[!redirects Eilenberg--MacLane objects]] [[!redirects Eilenberg-Mac Lane objects]] [[!redirects Eilenberg?Mac Lane objects]] [[!redirects Eilenberg--Mac Lane objects]] \end{document}