\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{Eilenberg-Mac Lane spectrum} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{cohomology}{}\paragraph*{{Cohomology}}\label{cohomology} [[!include cohomology - contents]] \hypertarget{stable_homotopy_theory}{}\paragraph*{{Stable Homotopy theory}}\label{stable_homotopy_theory} [[!include stable homotopy theory - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{incarnations}{Incarnations}\dotfill \pageref*{incarnations} \linebreak \noindent\hyperlink{AsSymmetricSpectra}{As symmetric/orthogonal spectra}\dotfill \pageref*{AsSymmetricSpectra} \linebreak \noindent\hyperlink{as_symmetric_monoidal_groupoids}{As symmetric monoidal $\infty$-groupoids}\dotfill \pageref*{as_symmetric_monoidal_groupoids} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{chromatic_filtration}{Chromatic filtration}\dotfill \pageref*{chromatic_filtration} \linebreak \noindent\hyperlink{ordinary_homology_spectra_split}{Ordinary homology spectra split}\dotfill \pageref*{ordinary_homology_spectra_split} \linebreak \noindent\hyperlink{fibrantcofibrant_models}{Fibrant-cofibrant models}\dotfill \pageref*{fibrantcofibrant_models} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} For $A$ an [[abelian group]], the \emph{Eilenberg-Mac Lane spectrum} $H A$ is the [[spectrum]] that [[Brown representability theorem|represents]] the [[ordinary cohomology|ordinary]] [[cohomology theory]]/[[ordinary homology]] with [[coefficients]] in $A$. By default $A$ is taken to be the [[integers]] and hence ``the Eilenberg-MacLane spectrum'' is $H \mathbb{Z}$, representing [[integral cohomology]]. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} \hypertarget{incarnations}{}\subsection*{{Incarnations}}\label{incarnations} \hypertarget{AsSymmetricSpectra}{}\subsubsection*{{As symmetric/orthogonal spectra}}\label{AsSymmetricSpectra} We discuss the model of Eilenberg-MacLane spectra as [[symmetric spectra]] and [[orthogonal spectra]]. To that end, notice the following model for [[Eilenberg-MacLane spaces]]. \begin{defn} \label{ReducedALinearizationOfnSphere}\hypertarget{ReducedALinearizationOfnSphere}{} For $A$ an [[abelian group]] and $n \in \mathbb{N}$, the \textbf{reduced $A$-linearization} $A[S^n]_\ast$ of the [[n-sphere]] $S^n$ is the [[topological space]], whose underlying set is the [[quotient]] \begin{displaymath} \underset{k \in \mathbb{N}}{\sqcup} A^k \times (S^n)^k \longrightarrow A[S^n]_\ast \end{displaymath} of the [[tensor product]] with $A$ of the [[free abelian group]] on the underlying set of $S^n$, by the relation that identifies every [[formal linear combination]] of the (any fixed) basepoint of $S^n$ with 0. The [[topological space|topology]] is the induced [[quotient topology]] (of the [[disjoint union]] of [[product topological spaces]], where $A$ is equipped with the [[discrete topology]]). \end{defn} (\href{Eilenberg-MacLane+space#AguilarGitlerPrieto02}{Aguilar-Gitler-Prieto 02, def. 6.4.20}) \begin{prop} \label{ReducedALinearizationOfnSphereIsEMSpace}\hypertarget{ReducedALinearizationOfnSphereIsEMSpace}{} For $A$ a [[countable set|countable]] [[abelian group]], then the reduced $A$-linearization $A[S^n]_\ast$ (def. \ref{ReducedALinearizationOfnSphere}) is an [[Eilenberg-MacLane space]], in that its [[homotopy groups]] are \begin{displaymath} \pi_q(A[S^n]_\ast) \simeq \left\{ \itexarray{ A & if \; q = n \\ \ast & otherwise } \right. \end{displaymath} (in particular for $n \geq 1$ then there is a unique connected component and hence we need not specify a basepoint for the homotopy group). \end{prop} (\href{Eilenberg-MacLane+space#AguilarGitlerPrieto02}{Aguilar-Gitler-Prieto 02, corollary 6.4.23}) \begin{defn} \label{}\hypertarget{}{} For $A$ a [[countable set|countable]] [[abelian group]], then the [[orthogonal spectrum]] incarnation of the \textbf{[[Eilenberg-MacLane spectrum]]} $H A$ is the [[orthogonal spectrum]] with \begin{itemize}% \item components spaces \begin{displaymath} (H A)_V \coloneqq A[S^V]_\ast \end{displaymath} being the reduced $A$-linearization (def. \ref{ReducedALinearizationOfnSphere}) of the [[representation sphere]] $S^V$; hence for $V = \mathbb{R}^n$ then \begin{displaymath} (H A)_n = A[S^n]_\ast \end{displaymath} \item $O(V)$-[[action]] on $A[S^V]_\ast$ induced from the canonical $O(V)$-action on $S^V$ ([[representation sphere]]); \item structure maps \begin{displaymath} \sigma_{V,W} \;\colon\; (H A)_V \wedge S^W \longrightarrow (H A)_{V\oplus W} \end{displaymath} hence \begin{displaymath} A[S^V] \wedge S^W \longrightarrow A[S^{V \oplus W}] \end{displaymath} given by \begin{displaymath} \left( \left( \underset{i}{\sum} a_i x_i \right), y \right) \mapsto \underset{i}{\sum} a_i (x_i, y) \,. \end{displaymath} \end{itemize} The incarnation of $H A$ as a [[symmetric spectrum]] is the same, with the group action of $O(n)$ replaced by the [[subgroup]] action of the [[symmetric group]] $\Sigma(n) \hookrightarrow O(n)$. If $R$ is a [[commutative ring]], then the Eilenberg-MacLane spectrum $H R$ becomes a commutative [[orthogonal ring spectrum]] (or [[symmetric ring spectrum]], respectively) by \begin{enumerate}% \item taking the multiplication \begin{displaymath} (H R)_{V_1} \wedge (H R)_{V_2} = R[S^{V_1}]_\ast \wedge R[S^{V_2}]_\ast \longrightarrow R[S^{V_1 \oplus V_2}] = (H R)_{V_1 \oplus V_2} \end{displaymath} to be given by \begin{displaymath} \left( \left( \underset{i}{\sum} a_i x_i \right) , \left( \underset{j}{\sum} b_j y_j \right) \right) \;\mapsto\; \underset{i,j}{\sum} (a_i \cdot b_j)(x_i, y_j) \end{displaymath} \item taking the unit maps \begin{displaymath} S^V \longrightarrow A[S^V]_\ast = (H R)_V \end{displaymath} to be given by the canonical inclusion of generators \begin{displaymath} x \mapsto 1 x \,. \end{displaymath} \end{enumerate} \end{defn} (\hyperlink{Schwede12}{Schwede 12, example I.1.14}, \hyperlink{Schwede15}{Schwede 15, V, costruction 3.21}) \hypertarget{as_symmetric_monoidal_groupoids}{}\subsubsection*{{As symmetric monoidal $\infty$-groupoids}}\label{as_symmetric_monoidal_groupoids} Under the identification of [[connective spectra]] with ``[[abelian infinity-groups]]'' the Eilenberg-MacLane spectrum $H A$ simply \emph{is} the group $A$. Here the set $A$ is regarded as a [[discrete category|discrete groupoid]] (one object per integer, no nontrivial morphisms) whose symmetric monoidal structure is that given by the additive group structure on the integers. Accordingly, the infinite tower of [[suspensions]] induced by this is the sequence of [[∞-groupoids]] \begin{displaymath} A, \mathbf{B} A, \mathbf{B}^2 A, \mathbf{B}^3 A, \cdots \end{displaymath} that in this case happen to be [[strict omega-groupoids]]. The [[strict omega-groupoid]] $\mathbf{B}^n A$ has only [[identity]] $k$-morphisms for all $k$, except for $k = n$, where $\mathrm{Mor}_n(\mathbf{B}^n A) = A$ are the endomorphisms of the unique identity $(n-1)$-morphism. The [[strict ∞-groupoid]] $\mathbf{B}^n A$ is the one given under the [[Dold-Kan correspondence]] by the [[crossed complex]] of groupoids that is trivial everywhere and has the group $\mathbb{Z}$ in degree $n$. \begin{displaymath} \begin{aligned} [\mathbf{B}^n A] &= ( \cdots \to [\mathbf{B}^n A]_{n+1} \to [\mathbf{B}^n A]_{n} \to [\mathbf{B}^n A]_{n-1} \cdots \to [\mathbf{B}^n A]_{1} \stackrel{\to}{\to} [\mathbf{B}^n A]_{0}) \\ &= ( \cdots \to {*} \to A \to {*} \cdots \to {*} \stackrel{\to}{\to} {*}) \end{aligned} \,. \end{displaymath} Under the [[Quillen equivalence]] \begin{displaymath} |-| : \infty Grpds \to Top \end{displaymath} between [[infinity-groupoids]] and [[topological spaces]] (see \emph{[[homotopy hypothesis]]}) this sequence of suspensions of $A$ maps to the sequence of [[Eilenberg?Mac Lane spaces]] \begin{displaymath} |\mathbf{B}^n A| \simeq K(A, n) \,. \end{displaymath} \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{chromatic_filtration}{}\subsubsection*{{Chromatic filtration}}\label{chromatic_filtration} [[!include chromatic tower examples - table]] \hypertarget{ordinary_homology_spectra_split}{}\subsubsection*{{Ordinary homology spectra split}}\label{ordinary_homology_spectra_split} \textbf{[[ordinary homology spectra split]]}: For $S$ any [[spectrum]] and $H A$ an Eilenberg-MacLane spectrum, then the [[smash product]] $S\wedge H A$ (the $A$-[[ordinary homology]] spectrum) is non-canonically equivalent to a product of EM-spectra (hence a [[wedge sum]] of EM-spectra in the finite case). \hypertarget{fibrantcofibrant_models}{}\subsubsection*{{Fibrant-cofibrant models}}\label{fibrantcofibrant_models} \href{http://mathoverflow.net/a/218069/381}{MO comment} \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[generalized Eilenberg-MacLane spectrum]] \item [[Moore spectrum]] \item [[cohomology theory]], [[ordinary cohomology]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} Textbook accounts include \begin{itemize}% \item [[Frank Adams]], part III, section 2 of \emph{[[Stable homotopy and generalised homology]]}, 1974 \item [[Stanley Kochmann]], section 3.5 of \emph{[[Bordism, Stable Homotopy and Adams Spectral Sequences]]}, AMS 1996 \end{itemize} Lecture notes include \begin{itemize}% \item [[Peter May]], chapter 22 of \emph{A concise course in algebraic topology} (\href{http://www.maths.ed.ac.uk/~aar/papers/maybook.pdf}{pdf}) \item [[John Rognes]], section 3.2 3.4 of \emph{The Adams spectral sequence}, 2012 (\href{http://folk.uio.no/rognes/papers/notes.050612.pdf}{pdf}) \end{itemize} As [[symmetric spectra]] \begin{itemize}% \item [[Stefan Schwede]], Example I.1.14 in \emph{Symmetric spectra}, 2012 (\href{http://www.math.uni-bonn.de/~schwede/SymSpec.pdf}{pdf}) \item [[John Greenlees]], example 3.6, example 4.16 in \emph{Spectra for commutative algebraists} (\href{http://www.math.uic.edu/~bshipley/greenlees.SpectraMSRI.pdf}{pdf}) \end{itemize} as [[orthogonal spectra]]: \begin{itemize}% \item [[Stefan Schwede]], construction V 3.21 in \emph{[[Global homotopy theory]]}, 2015 \end{itemize} [[!redirects Eilenberg-MacLane spectrum]] [[!redirects Eilenberg--MacLane spectrum]] [[!redirects Eilenberg--Mac Lane spectrum]] [[!redirects Eilenberg?MacLane spectrum]] [[!redirects Eilenberg?Mac Lane spectrum]] [[!redirects Eilenberg-MacLane spectra]] [[!redirects Eilenberg-Mac Lane spectra]] [[!redirects Eilenberg--MacLane spectra]] [[!redirects Eilenberg--Mac Lane spectra]] [[!redirects Eilenberg?MacLane spectra]] [[!redirects Eilenberg?Mac Lane spectra]] [[!redirects HR]] [[!redirects HA]] [[!redirects HC]] \end{document}