\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{Eilenberg-Moore category} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{2category_theory}{}\paragraph*{{2-Category theory}}\label{2category_theory} [[!include 2-category theory - contents]] \hypertarget{higher_algebra}{}\paragraph*{{Higher algebra}}\label{higher_algebra} [[!include higher algebra - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{Definition}{Definition}\dotfill \pageref*{Definition} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{universal_properties}{Universal properties}\dotfill \pageref*{universal_properties} \linebreak \noindent\hyperlink{AsColimitCompletionOfKleisliCategory}{As a colimit completion of the Kleisli category}\dotfill \pageref*{AsColimitCompletionOfKleisliCategory} \linebreak \noindent\hyperlink{by_lax_2limits}{By lax 2-limits}\dotfill \pageref*{by_lax_2limits} \linebreak \noindent\hyperlink{limits_and_colimits_in_em_categories}{Limits and colimits in EM categories}\dotfill \pageref*{limits_and_colimits_in_em_categories} \linebreak \noindent\hyperlink{LocalPresentability}{Local presentability}\dotfill \pageref*{LocalPresentability} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} The category of [[algebras over a monad]] (also: ``modules over a monad'') is traditionally called its \emph{Eilenberg--Moore category} (EM). Dually, the EM category of a [[comonad]] is its category of coalgebras (co-modules). The [[subcategory]] of [[free functor|(co-)free]] (co-)algebras is traditionally called the \emph{[[Kleisli category]]} of the (co-)monad. The EM and Kleisli categories have universal properties which make sense for (co-)monads in any [[2-category]] (not necessarily [[Cat]]). \hypertarget{Definition}{}\subsection*{{Definition}}\label{Definition} Let $(T,\eta,\mu)$ be a [[monad]] in [[Cat]], where $T \colon C\to C$ is an [[endofunctor]] with multiplication $\mu \colon T T\to T$ and unit $\eta \colon Id_C\to T$. \begin{defn} \label{}\hypertarget{}{} A (left) $T$-[[algebra for a monad|module]] (or $T$-algebra) in $C$ is a pair $(A,\nu)$ of an object $A$ in $C$ and a morphism $\nu\colon T(A)\to A$ which is a \textbf{$T$-[[action]]}, in that \begin{displaymath} \nu\circ T(\nu)=\nu\circ\mu_{A} \colon T(T(A))\to A \end{displaymath} and \begin{displaymath} \nu\circ\eta_A = id_A \,. \end{displaymath} A [[homomorphism]] of $T$-modules $f\colon (A,\nu^A)\to (B,\nu^B)$ is a morphism $f\colon A \to B$ in $C$ that commutes with the action, in that \begin{displaymath} f\circ\nu^A=\nu^B\circ T(f)\colon T(A)\to B \,. \end{displaymath} The composition of morphisms of $T$-modules is the composition of underlying morphisms in $C$. The resulting [[category]] $C^T$ of $T$-modules/algebras is called the \textbf{Eilenberg--Moore category} of the monad $T$, also be written $Alg(T)$, or $T\,Alg$, etc. By construction, there is a [[forgetful functor]] \begin{displaymath} U^T \colon C^T \to C \end{displaymath} (which may be thought of as the [[universal property|universal]] $T$-module) with a [[left adjoint]] [[free functor]] $F^T$ such that the monad $U^T F^T$ arising from the adjunction is isomorphic to $T$. \end{defn} More generally, for $t \colon a \to a$ is a monad in any [[2-category]] $K$, then the \textbf{Eilenberg--Moore object} $a^t$ of $t$ is, if it exists, the universal (left) $t$-module. That is, there is a morphism $u^t \colon a^t \to a$ and a 2-cell $t u^t \Rightarrow u^t$ that mediate a natural isomorphism $K(x, a^t) \cong LMod(x,t)$ between morphisms $x \to a^t$ and $t$-modules $(m \colon x \to a, \lambda \colon t m \Rightarrow m)$. Not every 2-category admits Eilenberg--Moore objects. \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{universal_properties}{}\subsubsection*{{Universal properties}}\label{universal_properties} Apart from being the universal left $T$-module, the EM category of a monad $T$ in $Cat$ has some other interesting properties. There is a [[full subcategory]] $RAdj(C)$ of the [[slice category]] $Cat/C$ on the functors $X \to C$ that have [[left adjoints]]. For any monad $T$ on $C$ there is a full subcategory of this consisting of the adjoint pairs that compose to give $T$. The functor $U^T \colon C^T \to C$ is the [[terminal object]] of this category. \hypertarget{AsColimitCompletionOfKleisliCategory}{}\subsubsection*{{As a colimit completion of the Kleisli category}}\label{AsColimitCompletionOfKleisliCategory} \begin{prop} \label{}\hypertarget{}{} Every $T$-algebra $(A,\nu)$ is the [[coequalizer]] of the first stage of its [[bar resolution]]: \begin{displaymath} (T^2 A, \mu_{T A}) \stackrel{\overset{\mu_A}{\longrightarrow}}{\underset{T \nu}{\longrightarrow}} (T A, \mu_A) \stackrel{\nu}{\longrightarrow} (A,\nu) \,. \end{displaymath} This is a [[reflexive coequalizer]] of $T$-algebras. Moreover, the underlying [[fork]] in $C$ is a [[split coequalizer]], hence in particular an [[absolute coequalizer]] (sometimes called the \emph{Beck coequalizer}, due to its role in the [[Beck monadicity theorem]]). A splitting is given by \begin{displaymath} T^2 A \stackrel{\eta_{T A}}{\longleftarrow} T A \stackrel{\eta_A}{\longleftarrow} A \,. \end{displaymath} \end{prop} (e.g. \hyperlink{MacLane}{MacLane, bottom of p. 148 and exercise 4 on p. 151}) See also at \href{split+coequalizer#BeckCoequalizerForAlgebrasOverAMonad}{split coequallizer -- Beck coequalizer for algebras over a monad}. In particular this says that every $T$-algebra is [[generators and relations|presented]] by free $T$-algebras. The nature of $T$-algebras as a kind of completion of free $T$-algebras under colimits is made more explicit as follows. Write $C_T$ for the [[Kleisli category]] of $T$, the category of [[free construction|free]] $T$-algebras. Write $F_T \colon C \to C_T$ the [[free functor]]. Observe that via the inclusion $C_T \hookrightarrow C^T$ every $T$-algebra [[representable functor|represents]] a [[presheaf]] on $C_T$. Recall that the [[category of presheaves]] $[C_T^{op}, Set]$ is the [[free cocompletion]] of $C_T$. \begin{prop} \label{}\hypertarget{}{} The $T$-algebras in $C$ are equivalently those presheaves on the category of free $T$-algebras whose restriction along the free functor is [[representable functor|representable]] in $C$. In other words, the Eilenberg-Moore category $C^T$ is the (1-category theoretic) [[pullback]] \begin{displaymath} \itexarray{ C^T & \to & [C_T^{op}, Set] \\ \downarrow & (pb) & \downarrow \mathrlap{[F_T^{op},Set]} \\ C & \underset{Y}{\to} & [C^{op}, Set] } \end{displaymath} of the [[category of presheaves]] on the [[Kleisli category]] along the [[Yoneda embedding]] $Y$ of $C$. \end{prop} This statement appears as (\hyperlink{Street72}{Street 72, theorem 14}). It seems to go back to (\hyperlink{Linton69}{Linton 69}), see (\hyperlink{Mellies10}{Melli\`e{}s 10, p. 4}). (\hyperlink{StreetWalters78}{Street-Walters 78}) show that it holds in any 2-category equipped with a [[Yoneda structure]]. \begin{proof} It is easy to see that the square commutes. To see that it is a pullback, assume that $P:C_T^{op}\to Set$ is a presheaf on the Kleisli category and $A$ is an object of $C$ such that $YA=P\circ F_T^{op}$. Then a $T$-algebra structure $\alpha:TA\to A$ on $A$ is given by $\alpha=P(1_{TA})(1_A)$, where $1_{TA}$ is viewed as a [[Kleisli category\#in\_terms\_of\_kleisli\_morphisms|Kleisli morphism]] from $TA$ to $A$ in $C_T$. \end{proof} \hypertarget{by_lax_2limits}{}\subsubsection*{{By lax 2-limits}}\label{by_lax_2limits} Just as the [[Kleisli object]] of a monad $t$ in a 2-category $K$ can be defined as the [[lax colimit]] of the [[lax functor]] $\ast \to K$ [[monad|corresponding]] to $t$, the EM object of $t$ is its [[lax limit]]. S. Lack has shown how Eilenberg-Moore objects $C^T$ can be obtained as combinations of certain simpler lax limits, when the 2-category $K$ in question is the 2-category of 2-algebras over a 2-monad $\mathbf{G}$ and lax, colax or pseudo morphisms of such: \begin{itemize}% \item [[Steve Lack]], \emph{Limits for lax morphisms} , Applied Categorical Structures \textbf{13}:3 (2005) , pp. 189--203(15) \end{itemize} This encompasses for example the theory of (op)monoidal monads and corresponding monoidal Eilenberg--Moore categories. If $(T,\mu,\eta)$ is a monad in a small category $A$, and $B$ is another category, then consider the functor category $[B,A]$. There is a tautological monad $[B,T]$ on $[B,A]$ defined by $[B,T](F)(b) = T(F(b))$, $b\in Ob B$, $[B,T](F)(f) = T(F(f))$, $f\in Mor B$, $\mu^{[B,T]}_F : TTF\Rightarrow TF$, $(\mu^{[B,T]}_F)_b = \mu_{Fb}$ $(\eta^{[B,T]}_F)_b = \eta_{Fb} : Fb\to TFb$. Then there is a canonical isomorphism of EM categories \begin{displaymath} [B,A^T] \cong [B,A]^{[B,T]}. \end{displaymath} Namely, write the object part of a functor $G : B\to A^T$ as $(G^A,G^\rho)$, where $G^A :B\to A$ and $G^\rho(b) : TG^A(b)\to G^A(b)$ is the $T$-action of $G^A(b)$ and the morphism part simply as $f\mapsto G(f)$. Then, $G^\rho : b\mapsto G^\rho(b) : TG^A\Rightarrow G^A$ is a natural transformation because for any morphism $f:b\to b'$, $G(f) : (G^A(b),G^\rho(b))\to (G^A(b'),G^\rho(b'))$ is by the definition of $G$, a morphism of $T$-algebras. $G^\rho$ is, by the same argument, an action $[B,T](G^A)\Rightarrow G^A$. Conversely, for any $[B,T]$-module $(G^A,G^\sigma)$ for any $b\in Ob B$, $G^\sigma(b)$ will evaluate to a $T$-action on $G^A(b)$, hence $b\mapsto (G^A(b), G^\sigma(b))$ is an object part of a functor in $[B,A^T]$ with morphism part again $f\mapsto G(g)$. The correspondence for the natural transformations, $g: (G^A,G^\sigma)\Rightarrow (H^A,H^\tau)$ is similar. Dually, for a comonad $\Omega$ in $B$, there is a canonical comonad $[\Omega, A]$ on $[B,A]$ and an isomorphism of categories \begin{displaymath} [B^\Omega, A] \cong [B,A]^{[\Omega,A]} \end{displaymath} \hypertarget{limits_and_colimits_in_em_categories}{}\subsubsection*{{Limits and colimits in EM categories}}\label{limits_and_colimits_in_em_categories} \begin{itemize}% \item The Eilenberg-Moore category of a monad $T$ on a category $C$ has all [[limits]] which exist in $C$, and they are [[created limit|created]] by the forgetful functor. \item In contrast, the subject of [[colimits in categories of algebras]] is less easy, but a good deal can be said. \end{itemize} \hypertarget{LocalPresentability}{}\subsubsection*{{Local presentability}}\label{LocalPresentability} \begin{defn} \label{AccessibleMonad}\hypertarget{AccessibleMonad}{} An \emph{[[accessible monad]]} is a [[monad]] on an [[accessible category]] whose underlying [[functor]] is an [[accessible functor]]. \end{defn} \begin{prop} \label{}\hypertarget{}{} The Eilenberg-Moore category of a $\kappa$-accessible monad, def. \ref{AccessibleMonad}, is a $\kappa$-[[accessible category]]. If in addition the category on which the monad acts is a $\kappa$-[[locally presentable category]] then so is the EM-category. \end{prop} (\hyperlink{AdamekRosicky}{Adamek-Rosicky, 2.78}) Moreover, let $C$ be a [[topos]]. Then \begin{itemize}% \item if a [[monad]] $T : C \to C$ has a [[right adjoint]] then $T Alg(C)= C^T$ is itself a topos; \item if a [[comonad]] $T : C \to C$ is [[exact functor|left exact]], then $T CoAlg(C) = C_T$ is itself a topos. \end{itemize} See at \emph{[[topos of algebras over a monad]]} for details. \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \begin{example} \label{}\hypertarget{}{} Given a [[reflective subcategory]] $\mathcal{C} \stackrel{\overset{L}{\leftarrow}}{\underset{\hookrightarrow}{i}} \mathcal{D}$ then the Eilenberg-Moore category of the induced [[idempotent monad]] $i\circ L$ on $\mathcal{D}$ recovers the subcategory $\mathcal{C}$. \end{example} For instance (\hyperlink{Borceux}{Borceux, vol 2, cor. 4.2.4}). \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[(∞,1)-category of algebras over an (∞,1)-monad]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} General discussion is in \begin{itemize}% \item [[Ross Street]], \emph{The formal theory of monads}, Journal of Pure and Applied Algebra 2, 1972 \item [[Fred Linton]], \emph{An outline of functorial semantics}, in [[LNM 80]], 1969 \item [[Fred Linton]], \emph{Relative functorial semantics: adjointness results}, Lecture Notes in Mathematics, vol. 99, 1969 \item [[Ross Street]], [[Bob Walters]], \emph{Yoneda structures}, J. Algebra \textbf{50}, 1978 \item [[Saunders MacLane]], \emph{[[Categories for the Working Mathematician]]} \end{itemize} Local presentability of EM-categories is discussed on p. 123, 124 of \begin{itemize}% \item [[Ji?í Adámek]], [[Ji?í Rosický]], \emph{[[Locally presentable and accessible categories]]}, Cambridge University Press, (1994) \end{itemize} The following paper of Melli\`e{}s compares the representability condition of (\hyperlink{Linton69}{Linton 69}) with the [[Segal condition]] that distinguishes those [[simplicial sets]] that are the [[nerves]] of categories. \begin{itemize}% \item [[Paul-André Melliès]], \emph{Segal condition meets computational effects}, LICS 2010 (\href{http://www.pps.jussieu.fr/~mellies/papers/segal-lics-2010.pdf}{pdf}) \end{itemize} The example of [[idempotent monads]] is discussed also in \begin{itemize}% \item [[Francis Borceux]], \emph{[[Handbook of Categorical Algebra]]}, vol.2, p. 196. \end{itemize} Discussion for [[(infinity,1)-monads]] realized in the context of [[quasi-categories]] is around def. 6.1.7 of \begin{itemize}% \item [[Emily Riehl]], [[Dominic Verity]], \emph{Homotopy coherent adjunctions and the formal theory of monads} (\href{http://arxiv.org/abs/1310.8279}{arXiv:1310.8279}) \end{itemize} [[!redirects Eilenberg-Moore categories]] [[!redirects Eilenberg–Moore category]] [[!redirects Eilenberg-Moore category]] [[!redirects Eilenberg--Moore category]] [[!redirects Eilenberg-Moore object]] [[!redirects Eilenberg-Moore object]] [[!redirects Eilenberg--Moore object]] [[!redirects Alg(T)]] [[!redirects T-Alg]] [[!redirects T-alg]] [[!redirects T Alg]] [[!redirects T alg]] [[!redirects Beck coequalizer]] [[!redirects Beck coequalizers]] [[!redirects Beck coequaliser]] [[!redirects Beck coequalisers]] [[!redirects Beck equalizer]] [[!redirects Beck equalizers]] [[!redirects Beck equaliser]] [[!redirects Beck equalisers]] [[!redirects category of algebras over a monad]] [[!redirects category of algebras for a monad]] \end{document}