\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{Eilenberg-Zilber map} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{homological_algebra}{}\paragraph*{{Homological algebra}}\label{homological_algebra} [[!include homological algebra - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{applications}{Applications}\dotfill \pageref*{applications} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} Let $C : sAb \to Ch_\bullet^+$ be the chains/[[Moore complex]] functor of the [[Dold-Kan correspondence]]. Let $(sAb, \otimes)$ be the standard [[monoidal category]] structure given degreewise by the [[tensor product]] on [[Ab]] and let $(Ch_\bullet^+, \otimes)$ be the standard monoidal structure on the [[category of chain complexes]]. \begin{defn} \label{}\hypertarget{}{} For $A,B \in sAb$ two abelian [[simplicial group]]s, the \textbf{Eilenberg-Zilber map} or \textbf{Eilenberg-MacLane map} or \textbf{shuffle map} is the [[natural transformation]] on [[chain complex]]es \begin{displaymath} \nabla_{A,B} : C(A) \otimes C(B) \to C(A \otimes B) \end{displaymath} defined on two $n$-simplices $a \in A_p$ and $b \in B_q$ by \begin{displaymath} \nabla_{A,B} : a \otimes b \mapsto \sum_{(\mu,\nu)} sign(\mu,\nu) (s_\nu(a)) \otimes (s_\mu(b)) \;\; \in C_{p+q}(A \otimes B) = A_{p+q} \otimes B_{p+q} \,, \end{displaymath} where the sum is over all $(p,q)$-[[shuffle]]s \begin{displaymath} (\mu,\nu) = (\mu_1, \cdots, \mu_p, \nu_1, \cdots, \nu_q) \end{displaymath} and the corresponding degeneracy maps are \begin{displaymath} s_{\mu} = s_{\mu_p - 1} \circ \cdots s_{\mu_2 - 1} \circ s_{\mu_1 - 1} \end{displaymath} and \begin{displaymath} s_{\nu} = s_{\nu_q - 1} \circ \cdots s_{\nu_2 - 1} \circ s_{\nu_1 - 1} \,. \end{displaymath} (The shift in the indices is to be coherent with the convention that the [[shuffle]] $(\mu, \nu)$ is a [[permutation]] of $\{1, \dots, p+q\}$. In many references the shift disappears by making it a permutation of $\{0, \dots, p+q-1\}$ instead.) The sign $sign(\mu,\nu) \in \{-1,1\}$ is the [[signature of a permutation|signature]] of the corresponding [[permutation]]. \end{defn} \begin{remark} \label{}\hypertarget{}{} The sum may be understood as being over all non-degenerate simplices in the product $\Delta[p] \times \Delta[q]$. See [[products of simplices]] for more on this. \end{remark} \begin{prop} \label{}\hypertarget{}{} This map restricts to the normalized chain complex \begin{displaymath} \nabla_{A,B} : N(A) \otimes N(B) \to N(A \otimes B) \,. \end{displaymath} \end{prop} \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \begin{prop} \label{}\hypertarget{}{} The Eilenberg-Zilber map is a [[lax monoidal transformation]] that makes $C$ and $N$ into [[lax monoidal functor]]s. \end{prop} See [[monoidal Dold-Kan correspondence]] for details. \begin{prop} \label{}\hypertarget{}{} On normalized chain complexes the EZ map has a [[left inverse]], given by the [[Alexander-Whitney map]] $\Delta_{A,B}$: \begin{displaymath} Id : N A \otimes N B \stackrel{\nabla_{A,B}}{\to} N(A \otimes B) \stackrel{\Delta_{A,B}}{\to} N A \otimes N B \,. \end{displaymath} \end{prop} \begin{prop} \label{}\hypertarget{}{} For all $X,Y$ the EZ map $\nabla_{X,Y}$ is a [[quasi-isomorphism]] and in fact a chain [[homotopy equivalence]]. \end{prop} This is in 29.10 of (\hyperlink{May}{May}). For the next statement notice that both $sAb$ and $Ch_\bullet^+$ are in fact [[symmetric monoidal categories]]. \begin{prop} \label{}\hypertarget{}{} The EZ map is [[symmetric monoidal functor|symmetric]] in that for all $A,B \in sAb$ the square \begin{displaymath} \itexarray{ C A \otimes C B &\stackrel{\sigma}{\to}& C B \otimes C A \\ {}^{\mathllap{\nabla_{A,B}}}\downarrow && \downarrow^{\mathrlap{\nabla_{B,A}}} \\ C(A\otimes B) &\stackrel{C(\sigma)}{\to}& C(B \otimes A) } \end{displaymath} commutes, where $\sigma$ denotes the symmetry isomorphism in $sAb$ and $Ch_\bullet^+$. \end{prop} \hypertarget{applications}{}\subsection*{{Applications}}\label{applications} \begin{itemize}% \item The Eilenberg-Zilber map induces a functor from [[simplicial Lie algebras]] to [[dg-Lie algebras]] (see \href{dgLieAlgebraOfASimplicialLieAlgebra}{here}) \end{itemize} \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[Alexander-Whitney map]] \item \textbf{Eilenberg-Zilber map} \item [[Eilenberg-Zilber theorem]] \item [[cap product]], [[cup product]] \end{itemize} In the context of filtered spaces $X_*, Y_*$ and their associated [[FundamentalCrossedComplex|fundamental crossed complex]]es $\Pi X_*, \Pi Y_*$ there is a natural Eilenberg-Zilber morphism \begin{displaymath} \eta: \Pi X_* \otimes \Pi Y_* \to \Pi (X_* \otimes Y_*) \end{displaymath} which is difficult to define directly because of the complications of the tensor product of crossed complexes, but has a direct definition in terms of the associated cubical homotopy $\omega$--groupoids. This morphism is an isomorphism of free crossed complexes if $X_*, Y_*$ are the skeletal filtrations of CW-complexes. For more on all this, see the book [[Nonabelian Algebraic Topology]] p. 533. \hypertarget{references}{}\subsection*{{References}}\label{references} The Eilenberg-Zilber map was introduced in (5.3) of \begin{itemize}% \item [[Samuel Eilenberg]], [[Saunders MacLane]], On the groups $H(\Pi,n)$, I, Ann. of Math. (2) 58, (1953), 55--106. (\href{https://www.jstor.org/stable/1969820}{jstor}) \end{itemize} See also \begin{itemize}% \item [[Peter May]], 29.7 of \emph{Simplicial objects in algebraic topology} , Chicago Lectures in Mathematics, Chicago, (1967) (\href{http://www.math.uchicago.edu/~may/BOOKS/Simp.djvu}{djvu}) \item [[Andy Tonks|A.P. Tonks]], \emph{On the Eilenberg-Zilber Theorem for crossed complexes}. J. Pure Appl. Algebra, 179{\tt \symbol{126}}(1-2) (2003) 199--220, \item [[Tim Porter]], section 11.2 of \emph{[[Crossed Menagerie]]}, \item [[Jean-Louis Loday]], section 1.6 of \emph{Cyclic Homology}, Grund. Math. Wiss. 301, Springer, 1992. \item [[Dan Quillen]], part I, section 4 of \emph{Rational homotopy theory}, The Annals of Mathematics, Second Series, Vol. 90, No. 2 (Sep., 1969), pp. 205-295 (\href{http://www.jstor.org/stable/1970725}{JSTOR}) \end{itemize} The specific maps introduced by Eilenberg-Mac Lane have stronger properties which for simplicial sets $K,L$ make $C(K) \otimes C(L)$ a strong deformation retract of $C(K \times L)$. This is exploited in \begin{itemize}% \item [[Ronnie Brown]], \emph{The twisted Eilenberg-Zilber theorem}. Simposio di Topologia (Messina, 1964), Edizioni Oderisi, Gubbio (1965), 33--37. \href{http://pages.bangor.ac.uk/~mas010/pdffiles/twistedez.pdf}{pdf} \end{itemize} [[!redirects shuffle map]] \end{document}