\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{Eilenberg-Zilber theorem} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{homological_algebra}{}\paragraph*{{Homological algebra}}\label{homological_algebra} [[!include homological algebra - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{statement}{Statement}\dotfill \pageref*{statement} \linebreak \noindent\hyperlink{a_version_for_simplicial_abelian_groups}{A version for simplicial abelian groups:}\dotfill \pageref*{a_version_for_simplicial_abelian_groups} \linebreak \noindent\hyperlink{cosimplicial_version}{Cosimplicial version}\dotfill \pageref*{cosimplicial_version} \linebreak \noindent\hyperlink{crossed_complex_version}{Crossed complex version}\dotfill \pageref*{crossed_complex_version} \linebreak \noindent\hyperlink{the_eilenberg__zilber_theorem_for_simplicial_sets}{The Eilenberg - Zilber theorem for simplicial sets}\dotfill \pageref*{the_eilenberg__zilber_theorem_for_simplicial_sets} \linebreak \noindent\hyperlink{applications}{Applications}\dotfill \pageref*{applications} \linebreak \noindent\hyperlink{ProdTopSp}{Homology groups of products of topological spaces}\dotfill \pageref*{ProdTopSp} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} The [[Dold-Kan correspondence]] relates [[simplicial groups]] to [[chain complexes]]. The \emph{Eilenberg-Zilber theorem} says how in this context [[double complexes]] and their [[total complexes]] relate to [[bisimplicial sets|bisimplicial groups]] and their [[diagonal of a bisimplicial set|diagonals]]/[[total simplicial sets]]. Analogously there is also a version of the theorem for bi-cosimplicial abelian groups. \hypertarget{statement}{}\subsection*{{Statement}}\label{statement} \hypertarget{a_version_for_simplicial_abelian_groups}{}\subsubsection*{{A version for simplicial abelian groups:}}\label{a_version_for_simplicial_abelian_groups} Let $A : \Delta^{op} \times \Delta^{op} \to Ab$ be a [[bisimplicial object|bisimplicial abelian group]]. Write \begin{itemize}% \item $C_\bullet diag A$ for the [[Moore complex]] of its diagonal simplicial group $diag A : \Delta^{op} \to \Delta^{op} \times \Delta^{op} \stackrel{A}{\to} Ab$; \item $Tot (C A)$ for the [[total complex]] of the [[double complex]] obtained by applying the [[Moore complex]] functor on both arguments of $A$. \end{itemize} \begin{utheorem} \textbf{(Dold-Puppe generalization of Eilenberg-Zilber)} There is a [[quasi-isomorphism]] (even a chain-[[homotopy equivalence]]) \begin{displaymath} R : C_\bullet diag (A) \stackrel{\simeq}{\to} Tot C (A) \,. \end{displaymath} \end{utheorem} \begin{uremark} Notice (see the discussion at [[bisimplicial set]]) that the diagonal simplicial set is isomorphic to the [[nerve and realization|realization]] given by the [[coend]] \begin{displaymath} diag F_{\bullet,\bullet} \simeq \int^{[n] \in \Delta} \Delta^n \times F_{n,\bullet} \,. \end{displaymath} \end{uremark} \hypertarget{cosimplicial_version}{}\subsubsection*{{Cosimplicial version}}\label{cosimplicial_version} Let $A : \Delta \times \Delta \to Ab$ be a bi-cosimplicial abelian group. And let $C : Ab^\Delta \to Ch^\bullet$ the Moore cochain complex functor. Write $C(A)$ for the [[double complex]] obtained by applying $C$ to each of the two cosimplicial directions. Then we have natural isomorphisms in cohomology \begin{utheorem} There is a [[natural isomorphism]] \begin{displaymath} H^\bullet C^\bullet diag(A) \simeq H^\bullet Tot C^\bullet(A) \end{displaymath} \end{utheorem} \hypertarget{crossed_complex_version}{}\subsubsection*{{Crossed complex version}}\label{crossed_complex_version} A version for [[crossed complexes]] is given by [[Andy Tonks]]. We give a summary: First note that there is a tensor product for crossed complexes developed by Brown and Higgins. Letting $K$ and $L$ be simplicial sets. \begin{itemize}% \item There is an Alexander-Whitney diagonal approximation defined as a natural transformation \end{itemize} \begin{displaymath} a_{K,L}: \pi(K\times L)\to \pi K \otimes \pi L. \end{displaymath} \begin{itemize}% \item Using [[shuffles]], one defines an Eilenberg - Zilber map \end{itemize} \begin{displaymath} b_{K,L}:\pi K \otimes \pi L \to\pi(K\times L), \end{displaymath} in a somewhat similar way to chain complexes. \begin{itemize}% \item The composite \end{itemize} \begin{displaymath} \pi(K\times L)\to \pi K \otimes \pi L\to\pi(K\times L), \end{displaymath} is homotopic to the identity on $\pi(K\times L)$, whilst the other composite is the identity on $\pi K \otimes \pi L$, thus this is a strong deformation retract of $\pi(K\times L)$. \hypertarget{the_eilenberg__zilber_theorem_for_simplicial_sets}{}\subsubsection*{{The Eilenberg - Zilber theorem for simplicial sets}}\label{the_eilenberg__zilber_theorem_for_simplicial_sets} Cegarra and Remedios have proved a version of the Eilenberg - Zilber theorem for simplicial sets. This is discussed under the entry on [[bisimplicial set]]s. \hypertarget{applications}{}\subsection*{{Applications}}\label{applications} \hypertarget{ProdTopSp}{}\subsubsection*{{Homology groups of products of topological spaces}}\label{ProdTopSp} This is the original motivating application. Let $X$ and $Y$ be two [[topological spaces]]. Their [[chain homology]] complexes $C_\bullet(X)$ and $C_\bullet(Y)$ are the [[Moore complex]]es of the simplicial abelian groups $\mathbb{Z}[Sing X]$ and $\mathbb{Z}[Sing Y]$. So from the Dold-Puppe [[quasi-isomorphism]] $R$ from above we have a [[quasi-isomorphism]] from the [[singular cohomology]] of their [[product topological space]] \begin{displaymath} \begin{aligned} C_\bullet(X \times Y) & \coloneqq C_\bullet( \mathbb{Z}[Sing X \times Sing Y] ) \\ &= C_\bullet( diag \mathbb{Z}[Sing X_\bullet] \otimes \mathbb{Z}[Sing Y_\bullet] ) \\ & \underoverset{\simeq}{R}{\longrightarrow} Tot C_\bullet(\mathbb{Z}[Sing X]) \otimes C_\bullet(\mathbb{Z}[Sing Y]) \\ & = Tot C_\bullet(X) \otimes C_\bullet(Y) \end{aligned} \end{displaymath} and hence in particular an isomorphism in cohomology. By following through these maps one can obtain an explicit description of the quasi isomorphism if needs be. \hypertarget{references}{}\subsection*{{References}}\label{references} The original reference is \begin{itemize}% \item [[Samuel Eilenberg]], J. Zilber, \emph{On Products of Complexes} , Amer. Jour. Math. 75 (1): 200--204, (1953) . \end{itemize} A weak version of the simplicial statement is in theorem 8.1.5 in \begin{itemize}% \item [[Charles Weibel]], \emph{An introduction to homological algebra} \end{itemize} The stronger version as stated above is in \href{http://www.maths.abdn.ac.uk/~bensondj/papers/g/goerss-jardine/ch-4.dvi}{chapter 4} of \begin{itemize}% \item [[Paul Goerss]], [[Rick Jardine]], \emph{[[Simplicial homotopy theory]]} (\href{http://www.maths.abdn.ac.uk/~bensondj/html/archive/goerss-jardine.html}{dvi}) \end{itemize} The cosimplicial version of the theorem appears as theorem A.3 in \begin{itemize}% \item L. Grunenfelder and M. Mastnak, \emph{Cohomology of abelian matched pairs and the Kac sequence} (\href{http://arxiv.org/abs/math/0212124}{arXiv:math/0212124}) \end{itemize} The crossed complex version is given in \begin{itemize}% \item [[Andy Tonks|A.P. Tonks]], \emph{On the Eilenberg-Zilber Theorem for crossed complexes}. J. Pure Appl. Algebra, 179{\tt \symbol{126}}(1-2) (2003) 199--220, \end{itemize} (for more detail see Tonks' \href{http://www.maths.bangor.ac.uk/research/tonks/pubs.html}{thesis}), and on page 360 of [[Nonabelian Algebraic Topology]]. \end{document}