\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{Einstein-Hilbert action} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{gravity}{}\paragraph*{{Gravity}}\label{gravity} [[!include gravity contents]] \hypertarget{physics}{}\paragraph*{{Physics}}\label{physics} [[!include physicscontents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{History}{History}\dotfill \pageref*{History} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \noindent\hyperlink{general}{General}\dotfill \pageref*{general} \linebreak \noindent\hyperlink{History}{History}\dotfill \pageref*{History} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} The \emph{Einstein-Hilbert action} is the [[action functional]] that defines the dynamics of [[gravity]] in [[general relativity]]. It is a canonical invariant of [[pseudo-Riemannian manifold]]s. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} Let $X$ be a [[compact topological space|compact]] [[smooth manifold]] [[manifold with boundary|with boundary]]. For $(X,g)$ the structure of a [[Riemannian manifold]] or [[pseudo-Riemannian manifold]] on $X$, hence for $g$ a (pseudo-)Riemannian metric on $X$, its \textbf{vacuum Einstein-Hilbert action} is the number \begin{displaymath} g \;\mapsto\; \int_X R(g) dvol(g) \,, \end{displaymath} where \begin{itemize}% \item $R(g) : X\to \mathbb{R}$ is the [[scalar curvature]] function of the [[metric]] $g$; \item $dvol(g)$ is the [[volume form]] defined by the metric \item $\int_X$ is [[integration of differential forms]] over $X$. \end{itemize} If the metric is instead encoded in terms of an [[Poincare group]]-[[connection on a bundle|connection]] $\nabla$ (the [[first-order formulation of gravity]]) then (for $dim X = 4$ and assuming for simplicity that the underlying bundle is trivial) this is equivalently \begin{displaymath} \nabla \;\mapsto\; \int_X \langle R \wedge e \wedge e \rangle \,, \end{displaymath} where now \begin{itemize}% \item $R$ denotes the [[curvature]] 2-form of the [[orthogonal group]]-connection part of $\nabla$; \item $e$ denotes the [[vielbein]], (the translation part of the connection 1-form); \item $\langle -\rangle$ is the [[invariant polynomial]] which in terms of the canonical basis has components $(\epsilon_{a b c d})$. \end{itemize} In either case this assignment defines a function \begin{displaymath} S_{EH} \;\colon\; Met(X) \longrightarrow \mathbb{R} \end{displaymath} on the space of (pseudo-)Riemannian metrics on $X$. This is the \emph{Einstein-Hilbert [[action functional]]}. This functional is invariant under the [[action]] of [[diffeomorphisms]] on $X$ (e.g. \hyperlink{Bertschinger02}{Bertschinger 02, section 4.2}). Therefore more properly the EH-action functional is the function descended to the [[moduli stack]] $Met(X)//Diff(X)$, see at \emph{[[general covariance]]}. More generally, this extends to an [[action functional]] for gravity coupled to ``matter'' (which in the context of [[general relativity]] conventionally means every other field, for instance the [[electromagnetic field]]) by simply adding the matter action on a given gravitational background \begin{displaymath} (g,\phi) \;\mapsto\; \int_X (L_{EH}(g) + L_\phi(g)) d vol(g) \,. \end{displaymath} The [[critical point]]s of the Einstein-Hilbert action define the physically realized metrics (and matter fields) on $X$, hence the physically realized [[spacetimes]] with underlying manifold $X$. This are [[Einstein's equations]] (the [[Euler-Lagrange equation]]s of this action) \begin{displaymath} \delta S_{EH}(g) = 0 \,. \end{displaymath} To derive the [[Einstein equation|Einstein Field equations]] from this, we will look at the Einstein-Hilbert action action in its usual form ($c$, the speed of light, is set to unity), in spacetime with no matter fields (i.e., matter Lagrangian $\mathcal{L}_M=0$): \begin{displaymath} S = \frac{1}{16\pi G} \int \operatorname{tr}_g(R) \sqrt{-g} \, \mathrm{d}^4x \;, \end{displaymath} The variation of this action can be performed: \begin{displaymath} \frac{\delta S}{\delta g}=0 \end{displaymath} The \href{http://en.wikipedia.org/wiki/Einstein%E2%80%93Hilbert_action}{Wikipedia Page} shows how to vary the action (with matter fields) through components, giving us the famed [[Einstein equation|Einstein field equations]]: \begin{displaymath} R-\frac{1}{2}g\,\operatorname{tr}_g(R)=T \end{displaymath} Here, $T$ is the [[stress-energy tensor|energy-momentum tensor]]. (\ldots{}) \hypertarget{History}{}\subsection*{{History}}\label{History} Historically, Einstein had been working towards what today are called [[Einstein's equations]] for some time. What is today called the [[Einstein tensor]] in the equation had been missing the trace term in one of his first publications, and other things remained unclear. Einstein was working with the 10 coordinate components of these [[tensors]] and trying to make the theory match classical [[Newtonian physics]] in the right limit. The ``[[general covariance]]'' of the equations made this a subtle problem, at least back in the times when these issues were just beginning to be appreciated. Hilbert had been following these developments and had listened to Einstein talk about them. Apparently at some point Hilbert, who believed in the axiomatic foundation of physics (as is evident from [[Hilbert's sixth problem]]), decided that whatever the correct equations of motion are, they ought to follow from an [[action principle]], hence that they characterize the [[critical points]] of an [[action functional]] on the space of [[pseudo-Riemannian metrics]] on some [[smooth manifold]]. Furthermore he observed that the most obvious such functional with the right [[symmetry]] properties is the [[integral]] over the [[Riemann scalar curvature]] times the [[volume form]] of the given metric (hence the ``Einstein-Hilbert action''). He computed the [[variational calculus|variational derivative]] of this and thereby found [[Einstein's equations]] apparently around the same time if not a little bit before Einstein published the final version of his theory. In (\hyperlink{SauerMajer}{Sauer-Majer, from p. 402}) a talk of Hilbert is reproduced that reviews Einstein's work, from the point of view of Hilbert's having known the right answer all along from the variational principle (hence from the axioms) as Einstein struggled (until a few days before the lecture was given!) with finding the right equations of gravity. This comment culminates (\hyperlink{SauerMajer}{Sauer-Majer, from p. 405}) with the curious remark, paraphrasing just a little: that the fact that Einstein after his ``colossal detour'' ends up with the same equations of motion as Hilbert already had is a ``nice consistency check'' (\emph{sch\"o{}ne Gew\"a{}hr}) p. 402: \begin{quote}% Das von mir aufgestellte Hamiltonsche Prinzip lautet $\delta \int \int \int \int I \sqrt{g} \, d x^1 d x^2 d x^3 d x^4 = 0$ \end{quote} (this defines the [[critical point]] of the [[action functional]] being the [[integral]] of the [[Lagrangian]] $I$ over [[spacetime]], i.e the [[principle of extremal action]]) p. 404: \begin{quote}% Indess m\"u{}ndet das Schlussresultat der letzten Einsteinschen Untersuchung wieder auf ein Hamiltonsches Prinzip, das dem urspr\"u{}nglich von mir aufgestellten gleicht; ja es k\"o{}nnte sein, dass diese Einsteinsche Theorie inhaltlich sich mit der von mir urspr\"u{}nglich aufgestellten Theorie v\"o{}llig deckt. \end{quote} p. 405: \begin{quote}% Als Entgelt daf\"u{}r k\"o{}nnen wir gegenw\"a{}rtig als sicher ansehen, dass die oben von mir aufgestellten Gl. gewiss den \emph{Grundstock f\"u{}r die Weltgl.} ausmachen. In einer letzten vor wenigen Tagen erschienenen Note gelangt Einstein zu dem Hamiltonschen Prinzip: $\delta \int \int \int \int \{K + \alpha \Phi + \beta \phi\} \sqrt{g} d x^1 d x^2 d x^3 d x^4 = 0$ $[...]$ Und wenn auf dem kollossalen Umweg \"u{}ber Levi Civita, Weyl, Schouten, Eddington Einst. zu dem Resultat zur\"u{}ckgelangt, so liegt darin sicher eine sch\"o{}ne Gew\"a{}hr. \end{quote} In Constance Reid's biography of Hilbert, one finds in Chapter XVII the following: \begin{quote}% In G\"o{}ttingen, in the weekly Hilbert-Debye seminars, it seemed to those few students who were left $[$ due to WWI $]$ that the ``living pulse'' of physical research was at their finger tips. The work of Einstein as he pressed forward toward a general theory of relativity was followed with great interest. Also followed was the work of others who were trying to reach the same goal. Hilbert was especially fascinated by the ideas of Gustav Mie, then in Greifswald, who was attempting to develop a theory of matter on the fundamentals of the relativity principle; and in his own investigations he was able to bring together Mie's program of pure field theory and Einstein's theory of gravitation. At the same time, while Einstein was attempting in a rather roundabout way to develop the binding laws for the 10 coefficients of the differential form which determines gravitation, Hilbert independantly solved the problem in a different, more direct way. Both men arrived at almost the same time at the same goal. As the western front settled down for the winter, Einstein presented his two papers, ``On general relativity theory'' to the Berlin Academy on November 11 and 25; Hilbert presented his first note on ``The foundations of physics'' to the Royal Society of Science in Gottingen on November 20, 1915. It was a remarkable coincidence \ldots{} but even more remarkable, according to $[$Max$]$ Born (who was now in Berlin with Einstein), was the fact that it led, not to a controversy over priority, but to a series of friendly encounters and letters. Hilbert freely admitted, and frequently stated in lectures, that the great idea was Einstein's. \end{quote} More citations on the priority issue are listed in \href{http://physics.stackexchange.com/a/56893/5603}{this Physics.SE comment}. The success of the Einstein-Hilbert [[action principle]] in the formulation of [[gravity]] probably had a considerable influence on the theoretical physics to follow and led some physcist to explore more systematically the space of action functionals invariant under prescribed symmetries. This way notably the [[supergravity]] variant of Einstein-gravity in the context of Riemannian [[supergeometry]] was found, a theory which eventually leads to [[superstring theory]]. These variants of course remain speculative as [[theory (physics)|theories]] of [[phenomenology|phenomenological physics]], but to some extent their development does follow Hilbert's attitude in the discovery of [[general relativity]]. \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[Einstein-Maxwell theory]] \item [[Einstein-Yang-Mills theory]] \item [[Einstein-Yang-Mills-Dirac theory]] \item [[Einstein-Maxwell-Yang-Mills-Dirac-Higgs theory]] \item [[higher order curvature corrections]] \end{itemize} [[!include standard model of fundamental physics - table]] \hypertarget{references}{}\subsection*{{References}}\label{references} \hypertarget{general}{}\subsubsection*{{General}}\label{general} Lecture notes include \begin{itemize}% \item Edmund Bertschinger, \emph{Symmetry transformations, the Einstein-Hilbert action, and gauge invariance} 2002 (\href{http://web.mit.edu/edbert/GR/gr5.pdf}{pdf}) \end{itemize} Section \emph{\href{geometry+of+physics#ActionFunctionalsForChernSimonsTypeGaugeTheories}{Prequantum gauge theory and Gravity}} at \begin{itemize}% \item \emph{[[geometry of physics]]} \end{itemize} \hypertarget{History}{}\subsubsection*{{History}}\label{History} \begin{itemize}% \item [[Tilman Sauer]], [[Ulrich Majer]] with Arne Schirrmacher, Heinz-J\"u{}rgen Schmidt (eds.), \emph{David Hilbert's ``Lectures on the foundations of physics''}, 1915-1927 : relativity, quantum theory and epistemology, Springer 2009 \end{itemize} [[!redirects Einstein-Hilbert action functional]] \end{document}