\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{Euclidean field theory} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{algebraic_quantum_field_theory}{}\paragraph*{{Algebraic Quantum Field Theory}}\label{algebraic_quantum_field_theory} [[!include AQFT and operator algebra contents]] \hypertarget{measure_and_probability_theory}{}\paragraph*{{Measure and probability theory}}\label{measure_and_probability_theory} [[!include measure theory - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{general}{General}\dotfill \pageref*{general} \linebreak \noindent\hyperlink{wick_rotation_to_relativistic_field_theory}{Wick rotation to Relativistic Field theory}\dotfill \pageref*{wick_rotation_to_relativistic_field_theory} \linebreak \noindent\hyperlink{temporal_compactification_to_thermal_relativistic_field_theory}{Temporal compactification to Thermal relativistic field theory}\dotfill \pageref*{temporal_compactification_to_thermal_relativistic_field_theory} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \noindent\hyperlink{general_2}{General}\dotfill \pageref*{general_2} \linebreak \noindent\hyperlink{thermal_quantum_field_theory}{Thermal quantum field theory:}\dotfill \pageref*{thermal_quantum_field_theory} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} \hypertarget{general}{}\subsubsection*{{General}}\label{general} In [[field theory]] one speaks of \emph{Euclidean field theory} if the underlying [[spaces]] on which the [[field (physics)|fields]] are defined are [[Riemannian manifolds]], as opposed to [[Lorentzian manifold|Lorentzian]] [[spacetimes]] used in [[relativistic field theory]], hence locally are \emph{[[Euclidean spaces]]} instead of [[Minkowski spacetimes]], whence the name ``Euclidean field theory.'' Concretely this means that in Euclidean field theory the [[local field theory|locality]] condition on the [[net of observables|net of]] [[quantum observables]] requires observables $A, B$ to [[commutator|commute]] as soon as their [[spacetime supports]] are [[disjoint subset|disjoint]] at all \begin{displaymath} supp(A) \cap supp(B) = \emptyset \;\;\;\;\Rightarrow\;\;\;\; [A,B] = 0 \,. \end{displaymath} This is in contrast to the analogous condition in [[relativistic field theory]] whose \emph{[[causal locality]]} requires this implication only if the two [[supports]] are in addition [[spacelike]]-separated. Equivalently this means that the [[n-point functions]] of Euclidean field theories are [[distributions of several variables]] with [[singularities]] on the [[fat diagonal]] (instead of on all of the relative [[light cones]], as for [[relativistic field theory]]). This means that Euclidean $n$-point functions [[restriction of distributions|restrict]] to [[non-singular distributions]] on the [[configuration spaces of points|configuration space of n points]], allowing to express [[correlators as differential forms on configuration spaces of points]]. Systematic discussion of [[perturbative quantum field theory|perturbative]] [[renormalization|renormalized]] Euclidean field theory from this perspective is due to \hyperlink{BergbauerBrunettiKreimer09}{Bergbauer-Brunetti-Kreimer 09}, \hyperlink{Berghoff14a}{Berghoff 14a}, \hyperlink{Berghoff14b}{Berghoff 14b}. This Euclidean locality property applies in particular in [[statistical mechanics]], where the ``[[field (physics)|fields]]'' of the field theory are not thought of as encoding the [[spacetime]]-behaviour of [[fundamental particles]] as governed by [[quantum physics]], but instead the spatial [[expectation values]] (at any given time) of [[equilibrium]] [[thermodynamics|thermodynamic]]-processes governed by [[classical physics]]. An archetypical example of a Euclidean field theory in this thermodynamic sense is the [[Ising model]]. Generally, most [[2d conformal field theories]] considered are Euclidean field theories and (should) have the interpretation of describing [[thermodynamics|thermodynamical]] systems ``at criticality''. However, other Euclidean [[2d CFTs]] are not necessarily regarded as thermodynamical systems, notably the [[worldsheet]]-field theories defining a [[string perturbation series]] in [[perturbative string theory]]. Another broad class of examples of Euclidean field theories are [[topological quantum field theories]] after their [[diffeomorphism]]-[[symmetry]] is partially [[gauge fixing|gauge fixed]] by a choice of [[Riemannian metric]]. The archetypical example here is [[perturbative quantum field theory|perturbative]] [[Chern-Simons theory]], see \href{Chern-Simons+theory#FeynmanPerturbationSeries}{there} for more. \hypertarget{wick_rotation_to_relativistic_field_theory}{}\subsubsection*{{Wick rotation to Relativistic Field theory}}\label{wick_rotation_to_relativistic_field_theory} Despite this superficially stark contrast between Euclidean and relativistic field theory, the two turn out to be tightly related to each other, at least under some conditions, in a subtle way that involves and generalizes the concept of [[analytic continuation]] from [[complex analysis]], here this is called \emph{[[Wick rotation]]}. Roughly this says that [[propagators]] and hence [[n-point functions]] of [[relativistic field theory]] on [[Minkowski spacetime]] $\mathbb{R}^{d,1}$ (may) have [[analytic continuation]] to [[complex number|complex values]] of the [[time]]-[[coordinates]], such that replacing [[real number|real]] time with [[imaginary number|imaginary]] time turns these [[n-point functions]] into those of a [[Euclidean field theory]] on $\mathbb{R}^{d+1}$, and vice versa. Precise formulation of the conditions that go into this [[Wick rotation]] between [[relativistic field theory]] and Euclidean field theory is the content of the [[Osterwalder-Schrader theorem]]. \hypertarget{temporal_compactification_to_thermal_relativistic_field_theory}{}\subsubsection*{{Temporal compactification to Thermal relativistic field theory}}\label{temporal_compactification_to_thermal_relativistic_field_theory} In fact this relation goes deeper still: Under suitable conditions the Euclidean field theory not on $\mathbb{R}^{d+1}$ but on $\mathbb{R}^d \times S^1_\beta$, with the [[circle]]-[[product space|factor]] $S^1_{\beta}$ of [[length]] $\beta$, corresponds to relativistic field theory on [[Minkowski spacetime]] $\mathbb{R}^{d,1}$ in a [[vacuum state]] that represents [[thermal equilibrium]] at [[temperature]] $T \coloneqq 1/\beta$. (The previous case of Euclidean field theory on $\mathbb{R}^{d+1}$ may be thought of as the special case $\beta \to \infty$, hence $T \to 0$.) This curious relation of [[Wick rotation]] with ``compact peridodic Euclidean time'' makes, when it applies, Euclidean field theory be a unification of [[relativistic field theory]] with [[statistical mechanics]]/[[thermodynamics]], then called \emph{thermal quantum field theory} or \emph{quantum statistical field theory} or similar. \begin{displaymath} \itexarray{ \left. \itexarray{ \text{relativistic field theory} \\ \text{on Minkowski spacetime} \\ \mathbb{R}^{d,1} \\ \text{in a thermal equilibrium state} \\ \text{at temperature}\; T } \right\} & \;\;\;\; \overset{ \text{Wick rotation} }{\leftrightarrow} \;\;\;\; & \left\{ \itexarray{ \text{Euclidean field theory} \\ \text{on Euclidean space} \\ \mathbb{R}^d \times S^1_{\beta} \\ \text{with compact/periodic Euclidean time} \\ \text{of length} \; \beta = 1/T } \right. \\ \phantom{A} \\ \underset{ { \text{equal-time n-point function} \atop \text{of relativistic fields} } \atop \text{ in thermal equilibrium state } \; \vert T\rangle }{ \underbrace{ \left\langle T\vert :\mathbf{\Phi}(x_1,t) \mathbf{\Phi}(x_2,t) \cdots \mathbf{\Phi}(x_n,t) : \vert T \right\rangle_{\mathbb{R}^{d,1}} }} &\;=\;& \underset{ \text{correlator of Euclidean fields} \atop \text{ for "Euclidean time" of periodicity}\; \beta = 1/T }{ \underbrace{ \left\langle 0 \vert \mathbf{\Phi}(x_1,t) \mathbf{\Phi}(x_2,t) \cdots \mathbf{\Phi}(x_n,t) \vert 0 \right\rangle_{\mathbb{R}^{d} \times S^1_{\beta}} }} } \end{displaymath} \begin{quote}% graphics grabbed form \hyperlink{FrolovZelnikov11}{Frolov-Zelnikov 11} \end{quote} Notice that the evident [[symmetry breaking|breaking]] of [[Lorentz group|Lorentz symmetry]] on the right side of this correspondence is perfectly consistent with what happens on the left hand: A thermal vacuum state in Minkowski spacetime also singles out a preferred Lorentz frame. The basic idea of this relation seems to go back to \hyperlink{Bloch58}{Bloch 58}. The physics literature often states this suggestively but informally in terms of [[path integral]]-imagery, see e.g. \hyperlink{Moore03}{Moore 03, section 1.1}. The first precise formulation seems to be due to \hyperlink{HoeghKrohn74}{Høegh-Krohn 74} (in 1+1 dimensions) and a more comprehensive discussion in view of the [[Osterwalder-Schrader theorem]] for compact Euclidean time is due to \hyperlink{KleinLandau81}{Klein-Landau 81}. The use of a ``periodic Euclidean time coordinate'' is also known as \emph{[[Matsubara formalism]]} (e.g. \hyperlink{LandsmanVanWert87}{Landsman-vanWert 87, section 2.3.1}) and specifically the condition that the periodicity has to be $\beta \coloneqq 1/T$ is known as the \emph{[[KMS conditions]]} for a \emph{[[KMS state]]} (For \emph{Kubo-Martin-Schwinger}, due to \hyperlink{Kubo57}{Kubo 57}, \hyperlink{MartinSchwinger59}{Martin-Schwinger 59} with its final form due to \hyperlink{HaagHugenholtzWinnink67}{Haag-Hugenholtz-Winnink 67}, see \hyperlink{FullingRuijsenaars87}{Fulling-Ruijsenaars 87, section 3.1}). Beware that literature discussing the KMS-condition often does not make the periodicity of Euclidean time explicit, and vice versa. This is clarified in \hyperlink{FullingRuijsenaars87}{Fulling-Ruijsenaars 87, sections 2 and 3}. General introduction to Euclidean and thermal field theory includes \hyperlink{Thoma00}{Thoma 00, section 2.2}, \hyperlink{PeetersZamaklar09}{Peeters-Zamaklar 09, section 1.3}. \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \begin{itemize}% \item [[Ising model]] \end{itemize} \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[instanton]], [[caloron]] \item [[2d CFT]] \item [[relativistic field theory]] \item [[lattice gauge theory]] \item [[infinite-temperature thermal field theory]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} \hypertarget{general_2}{}\subsubsection*{{General}}\label{general_2} General introduction to Euclidean field theory includes \begin{itemize}% \item [[Kasper Peeters]], [[Marija Zamaklar]], \emph{Euclidean Field Theory}, Lecture notes 2009-2011 (\href{http://maths.dur.ac.uk/users/kasper.peeters/eft.html}{web}, \href{http://maths.dur.ac.uk/users/kasper.peeters/pdf/eft.pdf}{pdf}) \end{itemize} A systematic development of Euclidean [[renormalization|renormalized]] [[perturbative quantum field theory]] with [[correlators as differential forms on configuration spaces of points]] is described in \begin{itemize}% \item [[Christoph Bergbauer]], [[Romeo Brunetti]], [[Dirk Kreimer]], \emph{Renormalization and resolution of singularities} (\href{https://arxiv.org/abs/0908.0633}{arXiv:0908.0633}) \item [[Christoph Bergbauer]], \emph{Renormalization and resolution of singularities}, talks as IHES and Boston, 2009 (\href{http://www.emg.uni-mainz.de/Dateien/bergbauer.pdf}{pdf}) \item [[Marko Berghoff]], \emph{Wonderful renormalization}, 2014 (\href{http://www2.mathematik.hu-berlin.de/%7Ekreimer/wp-content/uploads/Berghoff-Marko.pdf}{pdf}, \href{https://doi.org/10.18452/17160}{doi:10.18452/17160}) \item [[Marko Berghoff]], \emph{Wonderful compactifications in quantum field theory}, Communications in Number Theory and Physics Volume 9 (2015) Number 3 (\href{https://arxiv.org/abs/1411.5583}{arXiv:1411.5583}) \end{itemize} \hypertarget{thermal_quantum_field_theory}{}\subsubsection*{{Thermal quantum field theory:}}\label{thermal_quantum_field_theory} A good introduction is in \begin{itemize}% \item S.A. Fulling, S.N.M. Ruijsenaars, \emph{Temperature, periodicity and horizons}, Physics Reports Volume 152, Issue 3, August 1987, Pages 135-176 (\href{https://www1.maths.leeds.ac.uk/~siru/papers/p26.pdf}{pdf}, ) \end{itemize} The idea of Wick rotating thermal relativistic field theory to compact periodic Euclidean time apparently goes back to \begin{itemize}% \item Claude Bloch, \emph{Sur la détermination de l'état fondamental d'un système de particules}, Nucl. Phys. 7 (1958) 451 \end{itemize} This has maybe first been made precise, for the case of 1+1 dimensions, in \begin{itemize}% \item [[Raphael Høegh-Krohn]], \emph{Relativistic Quantum Statistical Mechanics in two-dimensional Space-Time}, Communications in Mathematical Physics 38.3 (1974): 195-224 (\href{https://www.duo.uio.no/bitstream/handle/10852/44072/1973-22.pdf}{pdf}) \end{itemize} A systematic discussion of the [[Osterwalder-Schrader theorem]] on [[Wick rotation]] for the case of thermal field theory/periodic Euclidean time is in \begin{itemize}% \item Abel Klein, Lawrence Landau, \emph{Periodic Gaussian Osterwalder-Schrader positive processes and the two-sided Markov property on the circle}, Pacific Journal of Mathematics, Vol. 94, No. 2, 1981 (\href{https://msp.org/pjm/1981/94-2/p12.xhtml}{DOI: 10.2140/pjm.1981.94.341}, \href{https://msp.org/pjm/1981/94-2/pjm-v94-n2-p12-s.pdf}{pdf}) \end{itemize} See also \begin{itemize}% \item \hyperlink{FullingRuijsenaars87}{Fulling-Ruijsenaars 87, section 2} \end{itemize} The formulation of the KMS condition is due to \begin{itemize}% \item R. Kubo \emph{Statistical-Mechanical Theory of Irreversible Processes I. General Theory and Simple Applications to Magnetic and Conduction Problems}, Journal of the Physical Society of Japan 12, 570-586 1957 \item Paul C. Martin, [[Julian Schwinger]], \emph{Theory of Many-Particle Systems. I}, Physical Review 115, 1342-1373 (1959) \end{itemize} and found its final, now generally accepted, form in \begin{itemize}% \item [[Rudolf Haag]], N. M. Hugenholtz, M. Winnink, \emph{On the equilibrium states in quantum statistical mechanics}, Comm. Math. Phys. Volume 5, Number 3 (1967), 215-236 (\href{https://projecteuclid.org/euclid.cmp/1103840050}{euclid:1103840050}) \end{itemize} Review of thermal field theory via Euclidean field theory includes \begin{itemize}% \item \hyperlink{FullingRuijsenaars87}{Fulling-Ruijsenaars 87, sections 2 and 3} \item [[Klaas Landsman]], Ch.G.van Weert, \emph{Real- and imaginary-time field theory at finite temperature and density}, Physics Reports Volume 145, Issues 3–4, January 1987, Pages 141-249 () \item [[Jean Zinn-Justin]], \emph{Quantum Field Theory at Finite Temperature: An Introduction} (\href{https://arxiv.org/abs/hep-ph/0005272}{arXiv:hep-ph/0005272}) \item Markus H. Thoma, \emph{New Developments and Applications of Thermal Field Theory} (\href{https://arxiv.org/abs/hep-ph/0010164}{arXiv:hep-ph/0010164}) \item Yuhao Yang, \emph{An Introduction to Thermal Field Theory}, 2011 (\href{https://www.imperial.ac.uk/media/imperial-college/research-centres-and-groups/theoretical-physics/msc/dissertations/2011/Yuhao-Yang-Dissertation.pdf}{pdf}) \item Yi-Cheng Huang, \emph{Field Theory in the Imaginary-time Formulation} (\href{https://arxiv.org/abs/1311.1990v4}{arXiv:1311.1990v4}) \item [[Roberto Longo]], \emph{Kubo-Martin-Schwinger, Non-Equilibrium Thermal states, and Conformal Field Theory}, 2016 (\href{https://www.mat.uniroma2.it/~longo/Slides_files/Harvard16.pdf}{pdf}) \end{itemize} Further discussion: \begin{itemize}% \item Christian D. Jäkel, \emph{The Reeh–Schlieder property for thermal field theories}, Journal of Mathematical Physics 41, 1745 2000 (\href{https://doi.org/10.1063/1.533208}{doi:10.1063/1.533208}) \item Christian D. Jäkel, Florian Robl, \emph{The relativistic KMS condition for the thermal $n$-point functions of the $P(\phi)_2$ model} (\href{https://arxiv.org/abs/1103.3609}{arXiv:1103.3609}) \end{itemize} With an eye towards [[lattice gauge theory]]: \begin{itemize}% \item Guy Moore, \emph{Informal lectures on lattice gauge theory}, 2003 (\href{https://theorie.ikp.physik.tu-darmstadt.de/qcd/moore/latt_lectures.pdf}{pdf}) \end{itemize} In application to [[black hole thermodynamics]]: \begin{itemize}% \item \hyperlink{FullingRuijsenaars87}{Fulling-Ruijsenaars 87, section 4} \item [[Gary Gibbons]], Malcolm J. Perry, \emph{Black Holes and Thermal Green Functions}, Vol. 358, No. 1695 (1978) (\href{https://www.jstor.org/stable/79482}{jstor:79482}) \item [[Valeri Frolov]], Andrei Zelnikov, section F4.4 of \emph{Introduction to black hole physics}, Oxford 2011 \end{itemize} Discussion of thermal [[Wick rotation]] on global [[anti-de Sitter spacetime]] (which is already periodic in \emph{real} time) is in \begin{itemize}% \item B. Allen, A. Folacci, [[Gary Gibbons]], \emph{Anti-de Sitter space at finite temperature}, Physics Letters B Volume 189, Issue 3, 7 May 1987, Pages 304-310 () \end{itemize} The expansion of thermal field theory around the [[infinite-temperature thermal field theory|infinite-temperature-limit]] (i.e. around $\beta = 1/T = 0$, i.e. [[KK-reduction]] in compact/periodic Euclidean time) is discussed in \begin{itemize}% \item [[Paul Ginsparg]], \emph{First and second order phase transitions in gauge theories at finite temperature}, Nuclear Physics B Volume 170, Issue 3, 15 December 1980, Pages 388-408 () \item Thomas Appelquist, Robert D. Pisarski, \emph{High-temperature Yang-Mills theories and three-dimensional quantum chromodynamics}, Phys. Rev. D 23, 2305 (1981) (\href{https://doi.org/10.1103/PhysRevD.23.2305}{doi:10.1103/PhysRevD.23.2305}) \item Sudhir Nadkarni, \emph{Dimensional reduction in finite-temperature quantum chromodynamics}, Phys. Rev. D 27, 917 (1983) (\href{https://doi.org/10.1103/PhysRevD.27.917}{doi:10.1103/PhysRevD.27.917}) \item Sudhir Nadkarni, \emph{Dimensional reduction in finite-temperature quantum chromodynamics. II}, Phys. Rev. D 38, 3287 (1988) (\href{https://doi.org/10.1103/PhysRevD.38.3287}{doi:10.1103/PhysRevD.38.3287}) \item Alexander N Jourjine, \emph{Quantum field theory in the infinite temperature limit}, Annals of Physics Volume 155, Issue 2, July 1984, Pages 305-332 () \item [[Klaas Landsman]], \emph{Limitations to dimensional reduction at high temperature}, Nuclear Physics B Volume 322, Issue 2, 14 August 1989, Pages 498-530 () \item T. Reisz, \emph{Realization of dimensional reduction at high temperature}, Z. Phys. C - Particles and Fields (1992) 53: 169 (\href{https://doi.org/10.1007/BF01483886}{doi:10.1007/BF01483886}) \item Eric Braaten, \emph{Solution to the Perturbative Infrared Catastrophe of Hot Gauge Theories}, Phys. Rev. Lett. 74, 2164 (1995) (\href{https://doi.org/10.1103/PhysRevLett.74.2164}{doi:10.1103/PhysRevLett.74.2164}) \item K. Kajantiea, M. Laine, K. Rummukainen, M. Shaposhnikov, \emph{Generic rules for high temperature dimensional reduction and their application to the standard model}, Nuclear Physics B Volume 458, Issues 1–2, 1 January 1996, Pages 90-136 () \end{itemize} and specifically with an eye to discussion of the [[quark-gluon plasma]] in \begin{itemize}% \item Jean-Paul Blaizot, Edmond Iancu, Anton Rebhan, \emph{Thermodynamics of the high temperature quark gluon plasma}, Quark–Gluon Plasma 3, pp. 60-122 (2004) (\href{https://arxiv.org/abs/hep-ph/0303185}{arXiv:hep-ph/0303185}, \href{http://inspirehep.net/record/615570}{spire:615570}) \end{itemize} See also \begin{itemize}% \item Wikipedia, \emph{\href{https://en.wikipedia.org/wiki/Thermal_quantum_field_theory}{Thermal quantum field theory}} \item Wikipedia, \emph{\href{https://en.wikipedia.org/wiki/Matsubara_frequency}{Matsubara frequency}} \item Wolfram Math World, \emph{\href{http://mathworld.wolfram.com/KMSCondition.html}{KMS condition}} \end{itemize} [[!redirects Euclidean field theories]] [[!redirects thermal quantum field theory]] [[!redirects thermal quantum field theories]] [[!redirects thermal field theory]] [[!redirects thermal field theories]] [[!redirects Matsubara formalism]] [[!redirects Matsubara formalisms]] [[!redirects Matsubara frequency]] [[!redirects Matsubara frequencies]] [[!redirects KMS condition]] [[!redirects KMS conditions]] \end{document}