\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{Euler class} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{cohomology}{}\paragraph*{{Cohomology}}\label{cohomology} [[!include cohomology - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{CupSquare}{Cup square}\dotfill \pageref*{CupSquare} \linebreak \noindent\hyperlink{WhitneySumFormula}{Whitney sum formula}\dotfill \pageref*{WhitneySumFormula} \linebreak \noindent\hyperlink{poincarhopf_theorem}{Poincaré–Hopf theorem}\dotfill \pageref*{poincarhopf_theorem} \linebreak \noindent\hyperlink{on_unit_sphere_bundles}{On unit sphere bundles}\dotfill \pageref*{on_unit_sphere_bundles} \linebreak \noindent\hyperlink{fiber_integration}{Fiber integration}\dotfill \pageref*{fiber_integration} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \noindent\hyperlink{general}{General}\dotfill \pageref*{general} \linebreak \noindent\hyperlink{euler_forms}{Euler forms}\dotfill \pageref*{euler_forms} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} The \emph{Euler class} $\chi$ (or $e$) is a [[characteristic class]] of the [[special orthogonal group]], hence of [[oriented]] [[real vector bundles]]. The Euler class of the [[tangent bundle]] of a [[smooth manifold]] $X$, evaluated on its [[fundamental class]], is its [[Euler characteristic]] $\chi[X]$. \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{CupSquare}{}\subsubsection*{{Cup square}}\label{CupSquare} For $E$ a [[vector bundle]] of [[even number|even]] [[rank of a vector bundle|rank]] $rank(E) = 2 k$, the [[cup product]] of the [[Euler class]] with itself equals the $k$th [[Pontryagin class]] \begin{equation} \chi(E) \smile \chi(E) \;=\; p_k(E) \,. \label{EulerSquareIsPontryagin}\end{equation} (e.g. \hyperlink{Walschap04}{Walschap 04, Section 6.3, p. 187}) When the Euler class is represented by the [[Euler form]] of a [[connection]] $\nabla$ on $E$, which then is [[fiber]]-wise proportional to the [[Pfaffian]] of the [[curvature form]] $F_\nabla$ of $\nabla$, the relation \eqref{EulerSquareIsPontryagin} corresponds to the fact that the product of a [[Pfaffian]] with itself is the [[determinant]]: $\big( Pf(F_\nabla) \big)^2 = det(F_\nabla)$. \hypertarget{WhitneySumFormula}{}\subsubsection*{{Whitney sum formula}}\label{WhitneySumFormula} \begin{prop} \label{EulerClassOfWhitneySumIsCupProductOfEulerClasses}\hypertarget{EulerClassOfWhitneySumIsCupProductOfEulerClasses}{} \textbf{([[Euler class]] takes [[Whitney sum]] to [[cup product]])} The Euler class of the [[Whitney sum]] of two [[orthogonal group|oriented]] [[real vector bundles]] to the [[cup product]] of the separate Euler classes: \begin{displaymath} \chi( E \oplus F ) \;=\; \chi(E) \smile \chi(F) \,. \end{displaymath} \end{prop} (e.g. \hyperlink{Walschap04}{Walschap 04, Section 6.4}) \hypertarget{poincarhopf_theorem}{}\subsubsection*{{Poincaré–Hopf theorem}}\label{poincarhopf_theorem} \begin{itemize}% \item [[Poincaré–Hopf theorem]] \end{itemize} \hypertarget{on_unit_sphere_bundles}{}\subsubsection*{{On unit sphere bundles}}\label{on_unit_sphere_bundles} \begin{prop} \label{TrivializationOfEulerFormOnUnitSphereBundle}\hypertarget{TrivializationOfEulerFormOnUnitSphereBundle}{} Let $X$ be a [[smooth manifold]] and $E \overset{\pi}{\longrightarrow} X$ an oriented [[real vector bundle]] of [[even number|even]] [[rank of a vector bundle|rank]], $rank(E) = 2k + 2$. For any choice of [[connection on a bundle|connection]] $\nabla$ on $E$ ($SO(dim(X))$-connection), let $\chi(\nabla_E) \in \Omega^{2k}(X)$ denote the corresponding [[Euler form]]. Then the [[pullback of differential forms|pullback]] of the [[Euler form]] $\chi(\nabla_E)$ to the [[unit sphere bundle]] $S(E) \overset{S(\pi)}{\longrightarrow} X$ is [[exact differential form|exact]] \begin{displaymath} \big( S(\pi) \big)^\ast \chi(\nabla_E) \;=\; d \Omega \end{displaymath} such that the trivializing form has (minus) unit [[integration of differential forms|integral]] over any of the [[n-sphere|(2k+1)-sphere]]-[[fibers]] $S^{2k+1}_x \overset{\iota_x}{\hookrightarrow} S(E)$: \begin{equation} \int_{S^{2k+1}} \iota_x^\ast \Omega \;=\; -1 \,. \label{FiberIntegrationOfTrivialization}\end{equation} \end{prop} (e.g. \hyperlink{Walschap04}{Walschap 04, Chapter 6.6, Thm. 6.1, p. 201-202}, \hyperlink{Poor07}{Poor 07, 3.68}, \hyperlink{Nie09}{Nie 09}) \hypertarget{fiber_integration}{}\subsubsection*{{Fiber integration}}\label{fiber_integration} \begin{prop} \label{FiberIntegrationOfCupPowersOfChiOver4Sphere}\hypertarget{FiberIntegrationOfCupPowersOfChiOver4Sphere}{} Let \begin{displaymath} \itexarray{ S^4 &\longrightarrow& B Spin(4) \\ && \big\downarrow^{\mathrlap{\pi}} \\ && B Spin(5) } \end{displaymath} be the [[spherical fibration]] of [[classifying spaces]] induced from the canonical inclusion of [[Spin(4)]] into [[Spin(5)]] and using that the [[4-sphere]] is equivalently the [[coset space]] $S^4 \simeq Spin(5)/Spin(4)$ (\href{sphere#nSphereAsCosetSpace}{this Prop.}). Then the [[fiber integration]] of the odd [[cup product|cup powers]] $\chi^{2k+1}$ of the [[Euler class]] $\chi \in H^4\big( B Spin(4), \mathbb{Z}\big)$ (see \href{Spin4#IntegralCohomologyOfClassifyingSpace}{this Prop}) are proportional to [[cup product|cup powers]] of the [[second Pontryagin class]] \begin{displaymath} \pi_\ast \left( \chi^{2k+1} \right) \;=\; 2 \big( p_2 \big)^k \;\;\in\;\; H^4\big( B Spin(5), \mathbb{Z} \big) \,, \end{displaymath} for instance \begin{displaymath} \begin{aligned} \pi_\ast \big( \chi \big) & = 2 \\ \pi_\ast \left( \chi^3 \right) & = 2 p_2 \\ \pi_\ast \left( \chi^5 \right) & = 2 (p_2)^2 \end{aligned} \;\;\in\;\; H^4\big( B Spin(5), \mathbb{Z} \big) \,; \end{displaymath} while the [[fiber integration]] of the even [[cup product|cup powers]] $\chi^{2k}$ vanishes \begin{displaymath} \pi_\ast \left( \chi^{2k} \right) \;=\; 0 \;\;\in\;\; H^4\big( B Spin(5), \mathbb{Z} \big) \,. \end{displaymath} \end{prop} (\hyperlink{BottCattaneo98}{Bott-Cattaneo 98, Lemma 2.1}) \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[Pontryagin class]], [[Stiefel-Whitney class]], [[Wu class]] \item [[I8|one-loop anomaly polynomial]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} \hypertarget{general}{}\subsubsection*{{General}}\label{general} \begin{itemize}% \item [[Raoul Bott]], [[Loring Tu]], Chapter 11 of \emph{[[Differential Forms in Algebraic Topology]]}, Graduate Texts in Mathematics 82, Springer 1982 (\href{https://doi.org/10.1007/BFb0063500}{doi:10.1007/BFb0063500}) \item [[Allen Hatcher]], \emph{Euler and Pontryagin classes}, section 3.2 in \emph{\href{http://pi.math.cornell.edu/~hatcher/VBKT/VBpage.html}{Vector bundles and K-theory}} (\href{http://pi.math.cornell.edu/~hatcher/VBKT/VB.pdf}{pdf}) \item Anant R. Shastri, section 2.1 of \emph{Vector bundles and Characteristic Classes} (\href{http://www.math.iitb.ac.in/~ars/seminar/bundle.pdf}{pdf}) \item Michael Hutchings, section 5 of \emph{Cup product and intersections} (\href{https://math.berkeley.edu/~hutching/teach/215b-2011/cup.pdf}{pdf}) \item Gerard Walschap, chapter 6.3 of \emph{Metric Structures in Differential Geometry}, Graduate Texts in Mathematics, Springer 2004 \end{itemize} Discussion of [[fiber integration]]: \begin{itemize}% \item [[Raoul Bott]], [[Alberto Cattaneo]], \emph{Integral Invariants of 3-Manifolds}, J. Diff. Geom., 48 (1998) 91-133 (\href{https://arxiv.org/abs/dg-ga/9710001}{arXiv:dg-ga/9710001}) \end{itemize} Discussion for [[projective modules]] \begin{itemize}% \item Satya Manda, \emph{An overview of Euler class theory} (\href{http://mandal.faculty.ku.edu/talks/amsTalk06.pdf}{pdf}) \end{itemize} See also \begin{itemize}% \item Wikipedia \href{http://en.wikipedia.org/wiki/Euler_class}{Euler class} \item Robert F. Brown, \emph{On the Lefschetz number and the Euler class}, Transactions of the AMS \textbf{118}, (1965) (\href{http://www.jstor.org/pss/1993952}{JSTOR}) \item Solomon Jekel, \emph{A simplicial formula and bound for the Euler class}, Israel Journal of Mathematics \textbf{66}, n. 1-3, 247-259 (1989) \end{itemize} \hypertarget{euler_forms}{}\subsubsection*{{Euler forms}}\label{euler_forms} Discussion of \emph{[[Euler forms]]} ([[differential form]]-representatives of Euler classes in [[de Rham cohomology]]) as [[Pfaffians]] of [[curvature forms]]: \begin{itemize}% \item [[Shiing-Shen Chern]], \emph{A Simple Intrinsic Proof of the Gauss-Bonnet Formula for Closed Riemannian Manifolds}, Annals of Mathematics, Second Series, Vol. 45, No. 4 (1944), pp. 747-752 (\href{https://www.jstor.org/stable/1969302}{jstor:1969302}) \item [[Raoul Bott]], [[Loring Tu]], Chapter 11 of \emph{[[Differential Forms in Algebraic Topology]]}, Graduate Texts in Mathematics 82, Springer 1982 (\href{https://doi.org/10.1007/BFb0063500}{doi:10.1007/BFb0063500}) \item [[Varghese Mathai]], [[Daniel Quillen]], below (7.3) of \emph{Superconnections, Thom classes, and equivariant differential forms}, Topology Volume 25, Issue 1, 1986 () \item Siye Wu, Section 2.2 of \emph{Mathai-Quillen Formalism}, pages 390-399 in \emph{Encyclopedia of Mathematical Physics} 2006 (\href{https://arxiv.org/abs/hep-th/0505003}{arXiv:hep-th/0505003}) \item \hyperlink{Walschap04}{Walschap 04, section 6.3} \item Walter A. Poor, 3.58 of \emph{Differential Geometric Structures}, Dover Books on Mathematics, 2007 \item Zhaohu Nie, \emph{Secondary Chern-Euler forms and the Law of Vector Fields} (\href{https://arxiv.org/abs/0909.4754}{arXiv:0909.4754} \item [[Hiro Lee Tanaka]], \emph{Pfaffians and the Euler class}, 2014 (\href{http://www.hiroleetanaka.com/pdfs/2014-fall-230a-lecture-26-gauss-bonnet-chern.pdf}{pdf}) \item [[Liviu Nicolaescu]], Section 8.3.2 of \emph{Lectures on the Geometry of Manifolds}, 2018 (\href{https://www3.nd.edu/~lnicolae/Lectures.pdf}{pdf}, \href{https://mathoverflow.net/a/117982/381}{MO comment}) \end{itemize} [[!redirects Euler classes]] [[!redirects Euler form]] [[!redirects Euler forms]] \end{document}