\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{Ext} \begin{quote}% under construction \end{quote} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{homological_algebra}{}\paragraph*{{Homological algebra}}\label{homological_algebra} [[!include homological algebra - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{ContravariantExtOnObject}{Contravariant $Ext$ on an ordinary object}\dotfill \pageref*{ContravariantExtOnObject} \linebreak \noindent\hyperlink{InTermsOfDerivedCategories}{In terms of derived categories}\dotfill \pageref*{InTermsOfDerivedCategories} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{RelationToGroupExtensions}{Relation to extensions}\dotfill \pageref*{RelationToGroupExtensions} \linebreak \noindent\hyperlink{1extensions_over_single_objects}{1-Extensions over single objects}\dotfill \pageref*{1extensions_over_single_objects} \linebreak \noindent\hyperlink{higher_extensions_over_general_chain_complexes}{Higher extensions over general chain complexes}\dotfill \pageref*{higher_extensions_over_general_chain_complexes} \linebreak \noindent\hyperlink{RelationToGroupCohomology}{Relation to group cohomology}\dotfill \pageref*{RelationToGroupCohomology} \linebreak \noindent\hyperlink{Locatization}{Localization}\dotfill \pageref*{Locatization} \linebreak \noindent\hyperlink{techniques_for_constructing_}{Techniques for constructing $Ext^n$}\dotfill \pageref*{techniques_for_constructing_} \linebreak \noindent\hyperlink{yoneda_product}{Yoneda product}\dotfill \pageref*{yoneda_product} \linebreak \noindent\hyperlink{applications_in_cohomology}{Applications in cohomology}\dotfill \pageref*{applications_in_cohomology} \linebreak \noindent\hyperlink{universal_coefficient_theorem}{Universal coefficient theorem}\dotfill \pageref*{universal_coefficient_theorem} \linebreak \noindent\hyperlink{various_notions_of_cohomology_expressed_by_}{Various notions of cohomology expressed by $Ext$}\dotfill \pageref*{various_notions_of_cohomology_expressed_by_} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} In the context of [[homological algebra]] the [[right derived functor]] of the [[hom-functor]] is called the \emph{$Ext$-functor} . It derives its name from the fact that the [[derived hom-functor]] between [[abelian groups]] classifies abelian [[group extensions]] of $A$ by $K$. (This is a special case of the general classification of [[principal ∞-bundles]]/[[∞-group extensions]] by general [[cohomology]]/[[group cohomology]].) Together with the [[Tor]]-functor it is one of the central objects of interest in homological algebra. Given an [[abelian category]] $\mathcal{A}$ we may consider the [[hom-functor]] $Hom_{\mathcal{A}} : \mathcal{A}^{op}\times \mathcal{A}\to$[[Ab]] either as a functor in first or in second argument, and compute the corresponding [[right derived functors]]. If they exist, the classical right derived functors of either functor agree and also agree with the [[homology]] of the mixed [[double complex]] obtained by taking simultaneously a [[projective resolution]] of the first contravariant argument and an [[injective resolution]] of the second covariant argument. The last construction is called the \emph{balanced $Ext$.} Alternatively, one can consider the [[derived category]] $D(\mathcal{A})$ and define \begin{displaymath} Ext^p(X,A) \coloneqq Hom_{D(A)}(X,A[p]) \end{displaymath} or define $Ext^i$-groups as groups of abelian extensions of length $i$, discussed below at \emph{\hyperlink{RelationToGroupExtensions}{Relation to extensions}}. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} We give the definition following the discussion at \emph{[[derived functors in homological algebra]]}. \hypertarget{ContravariantExtOnObject}{}\subsubsection*{{Contravariant $Ext$ on an ordinary object}}\label{ContravariantExtOnObject} Let $\mathcal{A}$ be an [[abelian category]] with [[projective object|enough projectives]]. And let $A \in \mathcal{A}$ be any object. Consider the [[contravariant functor|contravariant]] [[hom-functor]] \begin{displaymath} Hom_{\mathcal{A}}(-, A) : \mathcal{A}^{op} \to Ab \,. \end{displaymath} \begin{remark} \label{}\hypertarget{}{} This is a [[left exact functor]]. Therefore to derive it by [[resolutions]] we need to consider [[injective resolutions]] in the [[opposite category]] $\mathcal{A}^{op}$. But these are [[projective resolutions]] in $\mathcal{A}$ itself. \end{remark} \begin{defn} \label{OfSingleObjByProjResolution}\hypertarget{OfSingleObjByProjResolution}{} For $X \in \mathcal{A}$ any object and $((Q X) \to X) \in Ch_{\bullet \geq 0}(\mathcal{A})$ a [[projective resolution]], and for $n \in \mathbb{N}$, the \textbf{$n$th $Ext$-group} of $X$ with [[coefficients]] in $A$ is the degree-$n$ [[cochain cohomology]] \begin{displaymath} Ext^n(X,A) \coloneqq H^n ( Hom_{\mathcal{A}}((Q X)_\bullet, A)) \end{displaymath} of the [[cochain complex]] $Hom((Q X)_\bullet, A)$. \end{defn} The following proposition expands a bit on the meaning of this definition. Write \begin{displaymath} [-,-] : Ch_{\bullet}(\mathcal{A})^{op} \times Ch_\bullet(\mathcal{A}) \to Ch_\bullet(Ab) \end{displaymath} for the [[internal hom of chain complexes|enriched hom of chain complexes]]. \begin{prop} \label{}\hypertarget{}{} The $n$th Ext-group is canonically identified with the 0-th [[homology]] of this enriched hom from the resolution $Q X$ of $X$ to the $n$-fold [[delooping]]/[[suspension]] chain complex of $A$ $\mathbf{B}^n A = A[n]$ (concentrated on $A$ in degree $n$): \begin{displaymath} Ext^n(X,A) \simeq H_0 [(Q X), A[n] ] \,; \end{displaymath} or equivalently, if we think of degree [[chain homology]] as the 0th [[homotopy group]] (under [[Dold-Kan correspondence]]) and write the $n$-fold [[suspension]]/[[delooping]] of $A$ as $\mathbf{B}^n A$: \begin{displaymath} Ext^n(X,A) \simeq \pi_0 [(Q X), \mathbf{B}^n A ] \,. \end{displaymath} \end{prop} \begin{proof} This is a special case of the general discussion at [[cochain cohomology]]. By the discussion at \emph{[[internal hom of chain complexes]]}, the 0-[[cycles]] of $[(Q X), \mathbf{B}^n A ]$ are [[chain maps]] of the form \begin{displaymath} \itexarray{ \vdots && \vdots \\ \downarrow && \downarrow \\ (Q X)_{n+1} &\stackrel{f_{n+1}}{\to}& 0 \\ \downarrow^{\mathrlap{\partial^{Q X}_{n-1}}} && \downarrow \\ (Q X)_{n} &\stackrel{f_{n}}{\to}& A \\ \downarrow^{\mathrlap{\partial^{Q X}_{n-1}}} && \downarrow \\ (Q X)_{n-1} &\stackrel{f_{n-1}}{\to}& 0 \\ \downarrow && \downarrow \\ \vdots && \vdots \\ \downarrow^{\mathrlap{\partial^{Q X}_1}} && \downarrow \\ (Q X)_1 &\stackrel{f_1}{\to}& 0 \\ \downarrow^{\mathrlap{\partial^{Q X}_0}} && \downarrow \\ (Q X)_0 &\stackrel{f_0}{\to}& 0 } \,. \end{displaymath} By the definition of chain maps this are precisely those morphisms $f_n : (Q X)_n \to A$ such that \begin{displaymath} d^n f_n \coloneqq f_n \circ \partial^{Q X}_n = 0 \end{displaymath} which exhibits $f_n$ as a degree-$n$ [[cochain]] in the [[cochain complex]] $Hom((Q X)_\bullet, A)$. Similarly, the $0$-[[boundaries]] in $[(Q X), \mathbf{B}^n A]$ come from [[chain homotopies]] $\lambda : 0 \Rightarrow f$: \begin{displaymath} \itexarray{ \vdots && \vdots \\ \downarrow && \downarrow \\ (Q X)_{n+1} &\stackrel{f_{n+1}}{\to}& 0 \\ \downarrow^{\mathrlap{\partial^{Q X}_{n-1}}} &\nearrow_{\mathrlap{\lambda_{n+1}}}& \downarrow \\ (Q X)_{n} &\stackrel{f_{n}}{\to}& A \\ \downarrow^{\mathrlap{\partial^{Q X}_{n-1}}} &\nearrow_{\mathrlap{\lambda_{n}}}& \downarrow \\ (Q X)_{n-1} &\stackrel{f_{n-1}}{\to}& 0 \\ \downarrow && \downarrow \\ \vdots && \vdots \\ \downarrow^{\mathrlap{\partial^{Q X}_1}} &\nearrow_{\mathrlap{\lambda_{2}}}& \downarrow \\ (Q X)_1 &\stackrel{f_1}{\to}& 0 \\ \downarrow^{\mathrlap{\partial^{Q X}_0}} &\nearrow_{\mathrlap{\lambda_{1}}}& \downarrow \\ (Q X)_0 &\stackrel{f_0}{\to}& 0 } \,. \end{displaymath} in that \begin{displaymath} f_n = \lambda_n \circ \partial^{Q X}_{n-1} \,. \end{displaymath} This are precisely the degree-$n$ [[coboundaries]] in $Hom((Q X)_\bullet, A)$. \end{proof} \begin{remark} \label{}\hypertarget{}{} This perspective on the $Ext^n$-group as being the [[homotopy classes]] of maps out of (a resolution of) $X$ to $\mathbf{B}^n A$ is made more manifest in the discussion \hyperlink{InTermsOfDerivedCategories}{in terms of derived categories} below. It connects $Ext$-groups and their \hyperlink{RelationToGroupExtensions}{relation to extensions} to the general context of \emph{[[cohomology]]} and \emph{[[∞-group extensions]]}. See at \emph{[[abelian sheaf cohomology]]} for more on this. \end{remark} \hypertarget{InTermsOfDerivedCategories}{}\subsubsection*{{In terms of derived categories}}\label{InTermsOfDerivedCategories} (\ldots{}) (\hyperlink{KashiwaraShapira}{Kashiwara-Shapira}) (\ldots{}) \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{RelationToGroupExtensions}{}\subsubsection*{{Relation to extensions}}\label{RelationToGroupExtensions} We discuss how the group $Ext^n(X,A)$ is identified with the group of [[extensions]] of $X$ by $\mathbf{B}^{n-1} A = A[n-1]$. In particular for $n = 1$ and $\mathcal{A} =$ [[Ab]] this means that $Ext^1(X,A)$ classified ordinary [[group extensions]] of $X$ by $A$. This is the relation that the name ``$Ext$'' derives from. At \emph{[[infinity-group extension]]} is discussed how this relation is a special case of the more general relation that identifies [[derived hom-spaces]] $\mathbf{H}(X,\mathbf{B}^{n+1} A)$ with $\mathbf{B}^n A$-[[principal ∞-bundles]] over $X$. \hypertarget{1extensions_over_single_objects}{}\paragraph*{{1-Extensions over single objects}}\label{1extensions_over_single_objects} \begin{defn} \label{}\hypertarget{}{} For $X,A \in \mathcal{A}$ two objects, an \textbf{[[extension]]} of $X$ by $A$ is a [[short exact sequence]] \begin{displaymath} 0 \to A \to P \to X \to 0 \,. \end{displaymath} An [[homomorphism]] of two such extensions $P_1$ and $P_2$ is a [[morphism]] $P_1 \to P_2$ in $\mathcal{A}$ fitting into a [[commuting diagram]] of the form \begin{displaymath} \itexarray{ && P_1 \\ & \nearrow & & \searrow \\ A && \downarrow && X \\ & \searrow & & \nearrow \\ && P_2 } \,. \end{displaymath} \end{defn} \begin{remark} \label{}\hypertarget{}{} All these homomophisms are necessarily [[isomorphisms]], by the [[short five lemma]]. \end{remark} \begin{defn} \label{}\hypertarget{}{} Write $Ext(X,A)$ for the set of [[isomorphism classes]] of such extensions. \end{defn} \begin{prop} \label{}\hypertarget{}{} Under [[Baer sum]] $Ext(X,A)$ becomes an [[abelian group]]. \end{prop} \begin{defn} \label{ExtractCocycleFromExtension}\hypertarget{ExtractCocycleFromExtension}{} Define a morphism \begin{displaymath} ExtractCocycle : Extensions(X,A) \to Ext^1(X,A) \end{displaymath} by the following construction: choose a [[projective presentation]] $N \hookrightarrow Q \to X$ of $X$. Then for $A \to P \to X$ an extension consider the diagram \begin{displaymath} \itexarray{ N &\to& Q &\to& X \\ \downarrow^{\mathrlap{\sigma|_N}} && \downarrow^{\mathrlap{\sigma}} && \downarrow^{\mathrlap{=}} \\ A &\to& P &\to& X } \,, \end{displaymath} where \begin{itemize}% \item $\sigma$ is any choice of lifts of $Q \to A$ through $P \to A$, which exists by definition since $P$ is a [[projective object]], \item $\sigma|_N$ is the induces morphism on the fibers, which exists by the exactness of the two sequences. \end{itemize} By prop. \ref{Ext1FromProjectivePresentation} $\sigma|_N$ represents an element in $[\sigma|_N] \in Ext^1(X,A)$. Let this be the image of the map to be defined: \begin{displaymath} ExtractCocycle : (A \to P \to X) \mapsto [\sigma|_N] \,. \end{displaymath} This definition is independent of the choice of $P$ and $\sigma$ involved. \end{defn} \begin{prop} \label{}\hypertarget{}{} The map from def. \ref{ExtractCocycleFromExtension} is a [[natural isomorphism]] of abelian groups \begin{displaymath} Ext(X,A) \stackrel{\simeq}{\to} Ext^1(X,A) \,. \end{displaymath} \end{prop} \hypertarget{higher_extensions_over_general_chain_complexes}{}\paragraph*{{Higher extensions over general chain complexes}}\label{higher_extensions_over_general_chain_complexes} (\ldots{}) Given $[g] \in \mathbb{R}Hom(X, A[n])$. Let $Q \to X$ be a [[projective resolution]]. Let $g : Q \to A[n]$ be a representative of $[g]$.\newline Consider the [[pullback]] \begin{displaymath} \itexarray{ P &\to& cone(0 \to A[n]) \\ \downarrow && \downarrow \\ Q &\stackrel{g}{\to}& A[n] \\ \downarrow \\ X } \end{displaymath} (\ldots{}) \hypertarget{RelationToGroupCohomology}{}\subsubsection*{{Relation to group cohomology}}\label{RelationToGroupCohomology} For $G$ a [[discrete group]] with $\mathbb{Z}[G]$ its [[group ring]], over the [[integers]], and for $N$ a linear $G$-[[representation]], hence a $\mathbb{Z}[G]$-[[module]], the [[group cohomology]] of $G$ with [[coefficients]] in $N$ is \begin{displaymath} Ext^\bullet_{\mathbb{Z}[G]Mod}(\mathbb{Z}, N) \,. \end{displaymath} (\ldots{}) \hypertarget{Locatization}{}\subsubsection*{{Localization}}\label{Locatization} (\ldots{}) \hypertarget{techniques_for_constructing_}{}\subsubsection*{{Techniques for constructing $Ext^n$}}\label{techniques_for_constructing_} We discuss some facts helpful for the construction of $Ext^n$-groups in certain situations. \begin{prop} \label{}\hypertarget{}{} If $X \in \mathcal{A}$ is a [[projective object]], then \begin{displaymath} Ext^n(X, -) = 0 \end{displaymath} is the [[zero object|zero]]-[[functor]] for all $n \geq 1$. \end{prop} \begin{proof} The covariant [[hom-functor]] $Hom(X,-)$ is generally a [[left exact functor]]. By the construction of $Ext^n$ via [[projective resolutions]], def. \ref{OfSingleObjByProjResolution}, it is sufficient to show that it is also a [[right exact functor]] if $P$ is projective. In fact, this is one of the equivalent characterizations of \emph{[[projective objects]]} (ee the section \href{projective+object#EquivalentCharacterizationInAbelianCats}{projective object -- in abelian categories -- equivalent characterizations} for details). \end{proof} \begin{prop} \label{Ext1FromProjectivePresentation}\hypertarget{Ext1FromProjectivePresentation}{} For $X, A \in \mathcal{A}$ two objects, and \begin{displaymath} 0 \to N \stackrel{i}{\hookrightarrow} P \stackrel{p}{\to} X \to 0 \end{displaymath} a [[short exact sequence]] with $P$ a [[projective object]], hence exhibiting a [[projective presentation]] $X \simeq coker(N \hookrightarrow P)$ of $X$, there is an [[exact sequence]] \begin{displaymath} 0 \to Hom(X,A) \stackrel{Hom(p,A)}{\to} Hom(P, A) \stackrel{Hom(i,A)}{\to} Hom(N,A) \to Ext^1(X,A) \to 0 \end{displaymath} exhibiting $Ext^1(X,A)$ as the [[cokernel]] of $Hom(i,A)$. \end{prop} \hypertarget{yoneda_product}{}\subsubsection*{{Yoneda product}}\label{yoneda_product} The [[Yoneda product]] is a pairing \begin{displaymath} Ext^n(A,M) \otimes Ext^m(A,N) \to Ext^{n+m}(A,M\otimes_A N). \end{displaymath} (\ldots{}) \hypertarget{applications_in_cohomology}{}\subsection*{{Applications in cohomology}}\label{applications_in_cohomology} A [[derived hom-functor]] such as the $Ext$ on chain complexes compute general notions of \emph{[[cohomology]]} (see the discussion there). Here we list some specific incarnations of the $Ext$-construction in the context of cohomology. \hypertarget{universal_coefficient_theorem}{}\subsubsection*{{Universal coefficient theorem}}\label{universal_coefficient_theorem} The \emph{[[universal coefficient theorem]]} identifies, under suitable conditions, [[cohomology]] to the [[duality|dual]] of [[homology]] up to $Ext^1$-groups. \hypertarget{various_notions_of_cohomology_expressed_by_}{}\subsubsection*{{Various notions of cohomology expressed by $Ext$}}\label{various_notions_of_cohomology_expressed_by_} Various notions of [[cohomology groups]] in the context of [[algebra]] can be expressed as $Ext$-groups, for instance: \begin{itemize}% \item For $G$ a [[discrete group]] with $\mathbb{Z}[G]$ its [[group ring]], over the [[integers]], and for $N$ a linear $G$-[[representation]], hence a $\mathbb{Z}[G]$-[[module]], the [[group cohomology]] of $G$ with [[coefficients]] in $N$ is \begin{displaymath} Ext^\bullet_{\mathbb{Z}[G]Mod}(\mathbb{Z}, N) \,. \end{displaymath} \item For $A$ an [[associative algebra]] over some [[field]] $k$ and $N$ an $A$-[[bimodule]], hence an $A \otimes A^{op}$-[[module]], \begin{displaymath} Ext^\bullet_{(A \otimes A^{op})Mod}(A, N) \end{displaymath} is the [[Hochschild cohomology]] of $A$ with [[coefficients]] in $N$. \item For $\mathfrak{g}$ a [[Lie algebra]] with [[universal enveloping algebra]] $\mathcal{U}(\mathfrak{g})$ and $N$ a Lie algebra module, hence an $\mathcal{U}(\mathfrak{g})$-module, the [[Lie algebra cohomology]] of $\mathfrak{g}$ with [[coefficients]] in $N$ is \begin{displaymath} Ext^\bullet_{\mathcal{U}(\mathfrak{g}) Mod}(\mathcal{U}(\mathfrak{g}), N) \,. \end{displaymath} \end{itemize} \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} [[!include homotopy-homology-cohomology]] \hypertarget{references}{}\subsection*{{References}}\label{references} Standard texbook accounts include (see also most references at \emph{[[homological algebra]]}) \begin{itemize}% \item [[Charles Weibel]], \emph{[[An Introduction to Homological Algebra]]}, Cambridge Studies in Adv. Math. 38, CUP 1994 \end{itemize} \begin{itemize}% \item [[Henri Cartan]], [[Samuel Eilenberg]], \emph{Homological algebra}, Princeton Univ. Press 1956. \item S. I . Gelfand, [[Yuri Manin]], \emph{Methods of homological algebra} \end{itemize} A systematic discussion from the point of view of [[derived categories]] is in \begin{itemize}% \item [[Masaki Kashiwara]], [[Pierre Schapira]], \emph{[[Categories and Sheaves]]}, Springer (2000) \end{itemize} Lecture notes include \begin{itemize}% \item Kiyoshi Igusa, \emph{25 The Ext Functor} (\href{http://people.brandeis.edu/~igusa/Math101b/Ext.pdf}{pdf}) \end{itemize} section 4 of \begin{itemize}% \item [[Peter May]], \emph{Notes on Tor and Ext} (\href{http://www.math.uchicago.edu/~may/MISC/TorExt.pdf}{pdf}) \end{itemize} as well as \begin{itemize}% \item [[Patrick Morandi]], \emph{Ext Groups and Ext Functors}, (\href{http://sierra.nmsu.edu/morandi/oldwebpages/math683fall2002/Ext.pdf}{pdf}) (warning: the last section on resolutions for cocycles for group (abelian) exensions is not correct) \end{itemize} Original articles include \begin{itemize}% \item [[Saunders MacLane]], \emph{Group Extensions by primary abelian groups}, Transactions of the American Mathematical Society Vol. 95, No. 1 (Apr., 1960), pp. 1-16 (\href{http://www.jstor.org/stable/1993327}{JSTOR}) \end{itemize} See also \begin{itemize}% \item Wikipedia, \emph{\href{http://en.wikipedia.org/wiki/Ext_functor}{Ext functor}} \end{itemize} [[!redirects Ext group]] [[!redirects Ext-group]] [[!redirects Ext-groups]] [[!redirects Ext groups]] [[!redirects Ext functor]] [[!redirects Ext functors]] [[!redirects Ext-functor]] [[!redirects Ext-functors]] \end{document}