\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{F-norm} \hypertarget{fnorms}{}\section*{{F-norms}}\label{fnorms} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definitions}{Definitions}\dotfill \pageref*{definitions} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} An F-norm is a non-homogeneous variant of a [[norm]]: a translation-invariant [[metric]] on a [[vector space]] that satisfies properties in between being a [[G-norm]] (on the underlying [[abelian group]] of the vector space) and being a norm. As with norms, there is a semi- variant. \hypertarget{definitions}{}\subsection*{{Definitions}}\label{definitions} Let $K$ be a [[topological field]] (typically the [[real numbers]] or the [[complex numbers]], but conceivably only a [[topological ring]], or at least a [[commutative ring|commutative]] one); we will call the elements of $K$ \emph{scalars}. Let $V$ be a [[vector space]] (or [[module over a ring|module]]) over $K$; we will call the elements of $V$ \emph{vectors}. Let $\|{-}\|$ be a [[function]] from (the underlying set of) $V$ to the set of [[real numbers]]. \begin{defn} \label{Gseminorm}\hypertarget{Gseminorm}{} If \begin{enumerate}% \item ${\|0_V\|} = 0$ (or even just ${\|0\|} \leq 0$), \item ${\|{-x}\|} = {\|x\|}$ (or even just ${\|{-x}\|} \leq {\|x\|}$) for each vector $x$, and \item ${\|x + y\|} \leq {\|x\|} + {\|y\|}$ for each vector $x$ and vector $y$ (the [[triangle inequality]]), \end{enumerate} then ${\|{-}\|}$ is a \textbf{[[G-seminorm]]}. \end{defn} This is enough to prove that ${\|x\|} \geq 0$ for each $x$ in $V$, making $(x,y) \mapsto {\|y - x\|}$ (precisely) a translation-invariant [[pseudometric]] on $V$. Note that addition $(x,y) \mapsto x + y\colon V \times V \to V$ is a [[short map]] under this pseudometric and so certainly [[continuous map|continuous]]. \begin{defn} \label{Fseminorm}\hypertarget{Fseminorm}{} If \begin{enumerate}% \item $\|{-}\|$ is a G-seminorm and \item scalar multiplication $(a,x) \mapsto a x\colon K \times V \to V$ is continuous (relative to the topology on $K$ and the pseudometric on $V$), \end{enumerate} then $\|{-}\|$ is an \textbf{F-seminorm}. \end{defn} If the topology on $K$ is given by an [[absolute value]] $|{-}|$, then we can go further: \begin{defn} \label{seminorm}\hypertarget{seminorm}{} If \begin{enumerate}% \item ${\|x + y\|} \leq {\|x\|} + {\|y\|}$ for each vector $x$ and vector $y$ and \item ${\|a x\|} = {|a|} {\|x\|}$ for each scalar $a$ and vector $x$, \end{enumerate} then $\|{-}\|$ is a \textbf{[[seminorm]]}. \end{defn} Every seminorm is automatically an F-seminorm. No longer assuming anything further about $K$, there are some subsidiary definitions: \begin{defn} \label{Fnorm}\hypertarget{Fnorm}{} If \begin{enumerate}% \item $\|{-}\|$ is an F-seminorm and \item $x = 0_V$ whenever $x$ is a vector and ${\|x\|} = 0$, \end{enumerate} then $\|{-}\|$ is an \textbf{F-norm}. \end{defn} Thus an F-norm is precisely an F-seminorm whose induced pseudometric is a [[metric]]. (Compare the relationship between [[G-norms]] and [[norms]] with G-seminorms in \ref{Gseminorm} and seminorms in \ref{seminorm} above.) \begin{defn} \label{Fspace}\hypertarget{Fspace}{} If \begin{enumerate}% \item $\|{-}\|$ is an F-norm and \item $x$ converges under the metric on $V$ whenever $x$ is a [[net]] of vectors and $\lim_{i,j} {\|x_j - x_i\|} = 0$ in $\mathbb{R}$, \end{enumerate} then $(V,{\|{-}\|})$ is an \textbf{F-space}. \end{defn} In other words, an F-space is a vector space equipped with an F-norm whose induced metric is [[complete metric|complete]] (or equivalently such that the topology on $V$ is [[complete topological group|complete]]). \begin{defn} \label{Frechetspace}\hypertarget{Frechetspace}{} If \begin{enumerate}% \item $(V,{\|{-}\|})$ is an F-space and \item $(V,{\|{-}\|})$ is [[locally convex space|locally convex]] as a topological vector space, \end{enumerate} then $(V,{\|{-}\|})$ is a \textbf{[[Fréchet space]]}. \end{defn} Finally, $F Sp$ is the [[category]] whose [[objects]] are F-spaces and whose morphisms are [[short linear maps]]; that said, often people really study the [[essential image]] of that category within the category of [[topological vector spaces]], or [[equivalence of categories|equivalently]] the category whose objects are F-spaces and whose morphisms are [[continuous map|continuous]] linear maps. (This is especially so with Fr\'e{}chet spaces, which have a common alternative definition that makes no reference to a canonical metric.) \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} The usual examples of F-spaces that are not Fr\'e{}chet spaces are the [[Lebesgue spaces]] $l^p$ for $p \lt 0 \lt 1$. These use a modified $p$-[[p-norm|norm]] in which \begin{displaymath} {\|x\|_p} = \sum_i {|x_i|^p} \end{displaymath} (so without the $p$th root) to ensure that the [[triangle inequality]] (\ref{Gseminorm}.3) holds. \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} The uniqueness theorem for [[complete space|complete]] [[norms]] in [[dream mathematics]] applies also to F-norms: assuming [[excluded middle]], [[dependent choice]], and the (classically false) [[Borel property]], two complete F-norms on a given [[vector space]] over the [[real numbers]] must be [[topological equivalence|topologically equivalent]]. See [[norm\#dreamUnique]]. category: analysis [[!redirects F-space]] [[!redirects F-spaces]] [[!redirects F space]] [[!redirects F spaces]] [[!redirects Fspace]] [[!redirects Fspaces]] [[!redirects F-norm]] [[!redirects F-norms]] [[!redirects F norm]] [[!redirects F norms]] [[!redirects Fnorm]] [[!redirects Fnorms]] [[!redirects F-seminorm]] [[!redirects F-seminorms]] [[!redirects F seminorm]] [[!redirects F seminorms]] [[!redirects Fseminorm]] [[!redirects Fseminorms]] \end{document}