\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{Fermat's little theorem} \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{statement}{Statement}\dotfill \pageref*{statement} \linebreak \noindent\hyperlink{refinements}{Refinements}\dotfill \pageref*{refinements} \linebreak \noindent\hyperlink{pseudoprimes_and_carmichael_numbers}{Pseudoprimes and Carmichael numbers}\dotfill \pageref*{pseudoprimes_and_carmichael_numbers} \linebreak \noindent\hyperlink{aks_primality_test}{AKS primality test}\dotfill \pageref*{aks_primality_test} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{statement}{}\subsection*{{Statement}}\label{statement} For $x$ an [[integer]] and $p$ a [[prime number]], if $x \nequiv 0 \pmod{p}$, then $x^{p-1} \equiv 1 \pmod{p}$. This useful result is in a sense trivial, since the [[ring]] $\mathbb{Z}/(p)$ is a finite [[field]], with [[group of units]] $G$ of [[order of a group|order]] $p-1$; it is just a matter of recalling $x^{ord(G)} = 1$ for all $x$ in a [[finite group]] $G$. For the same reason, $a^{q-1} = 1$ for any nonzero $a$ in a finite field with $q$ elements. \hypertarget{refinements}{}\subsection*{{Refinements}}\label{refinements} A stronger result is that the group of units of a finite field with $q$ elements is \emph{[[cyclic group|cyclic]]} of order $q-1$, or indeed that every finite subgroup of the group of units of any field is cyclic. A proof may be found \href{/nlab/show/root#rootsunity}{here}. If $A$ is a commutative $\mathbb{F}_p$-[[associative unital algebra|algebra]], then the map $a \mapsto a^p$ is an algebra endomorphism $\sigma: A \to A$ (the preservation of addition follows easily from the [[binomial theorem]] and the fact that $\binom{p}{k} \equiv 0 \pmod{p}$ when $0 \lt k \lt p$; apparently this is also known as the [[freshman's dream]]). It follows that $\sigma: \mathbb{F}_q \to \mathbb{F}_q$ is a field \emph{automorphism} on a field with $q = p^k$ elements, since after all \begin{displaymath} \sigma^k(a) = a^{p^k} = a^q = a^{q-1}a = a \end{displaymath} for any $a \in \mathbb{F}_q$. See also [[Frobenius automorphism]]. \hypertarget{pseudoprimes_and_carmichael_numbers}{}\subsection*{{Pseudoprimes and Carmichael numbers}}\label{pseudoprimes_and_carmichael_numbers} Fermat's little theorem says that in order for a positive integer $p$ to be prime, it is necessary that $a^p \equiv a \pmod{p}$ for any integer $a$ (one may as well assume $0 \leq a \lt p$). This gives a way of showing that an integer $n$ is \emph{not} prime (by finding an $a$ less than $n$ such that $a^{n-1} \nequiv 1 \pmod{n}$) that, especially for large $n$, is more efficient than actually factoring $n$. One type of (probabilistic) primality test for $p$ is to take a base, for example $a = 2$, and check whether $a^{p-1} = 1 \pmod{p}$. Chances are good that $p$ is in fact prime if this is satisfied, although there certainly exist composite numbers which pass this test (called pseudoprimes base $a$). The smallest pseudoprime base $2$ is $341 = 11 \cdot 31$. One effective primality test for ``small'' $p$ (e.g., less than $10^{15}$) is to use such a primality test coupled with a table of pseudoprimes. There are numbers such as $n = 561 = 3 \cdot 11 \cdot 17$ which are pseudoprimes in any base; these are called \emph{Carmichael numbers}. A positive integer $n$ is Carmichael iff it is square-free and for each prime divisor $p$ of $n$, we have that $p-1$ is a divisor of $n-1$. They are comparatively rare, but it is known there are infinitely many (for sufficiently large $n$, there are at least $n^{2/7}$ Carmichael numbers between $1$ and $n$). \hypertarget{aks_primality_test}{}\subsection*{{AKS primality test}}\label{aks_primality_test} A generalization of Fermat's little theorem can be used to give a deterministic test for primality that can be carried out on any integer $n$ in ``polynomial time'' (bounded by a polynomial applied to the number of digits of $n$); it was first published only as recently as 2002. \begin{lemma} \label{}\hypertarget{}{} An integer $n \geq 2$ is prime if and only if \begin{displaymath} (x-a)^n \equiv x^n - a \pmod{n} \end{displaymath} for every or even any $a$ coprime to $n$ (so that, for example, the case $a=1$ would be a sufficient criterion for primality). \end{lemma} \begin{proof} By the \href{nlab/show/freshman's+dream#primality}{argument at freshman's dream}, primality of $n$ is equivalent to $(x-a)^n \equiv x^n - a^n \pmod{n}$ (for every or any $a$), and then primality of $n$ implies the further reduction $a^n \equiv a \pmod{n}$ by Fermat's little theorem. \end{proof} Given an integer $r$, and an integer $a$ relatively prime to $r$, let $ord_r(a)$ denote the order of $a \pmod{r}$ as a unit in $\mathbb{Z}/(r)$. We let $log(n)$ denote the base $2$ [[logarithm]] of $n$, and $\phi$ denotes the [[Euler totient function]] (so $\phi(r)$ is the cardinality of the [[group of units]] of $\mathbb{Z}/(r)$). \begin{theorem} \label{}\hypertarget{}{} \textbf{(Agrawal, Kayal, Saxena)} For given $n$, let $r$ be the least positive integer such that $ord_r(n) \gt (log(n))^2$. Then $n$ is prime if and only if either \begin{itemize}% \item $n \leq r$ and whenever $1 \leq a \leq r$, either $1 = \gcd(a, n)$ or $n = \gcd(a, n)$, or \item $r \lt n$ and whenever $a$ is an integer such that $1 \leq a \leq \sqrt{\phi(r)} \cdot log(n)$, we have \begin{displaymath} (x - a)^n \equiv x^n - a \pmod{x^r - 1, n}. \end{displaymath} \end{itemize} \end{theorem} From this result, one can extract an algorithm that decides primality of $n$ in time bounded by a polynomial in $log(n)$, invoking help from the following result. \begin{lemma} \label{}\hypertarget{}{} For each $n$ there exists $r \leq \max \{3, (log(n))^5\}$ such that $ord_r(n) \gt (log(n))^2$. \end{lemma} These results form the basis for the first algorithm for deciding primality that is general (applies to any integer $n$), runs in polynomial time, is deterministic (other known efficient tests were randomized and only guaranteed high probability of primality), and unconditional (does not depend on conjectured number-theoretic results such as forms of the [[Riemann hypothesis]]). \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[Fermat quotient]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} Named after \emph{[[Pierre de Fermat]]}. \begin{itemize}% \item Manindra Agrawal, Neeraj Kayal, and Nitin Saxena, \emph{PRIMES is in P}, Annals of Mathematics 160 (2) (2004), 781--793. doi:10.4007/annals.2004.160.781. JSTOR 3597229. (\href{http://www.cse.iitk.ac.in/users/manindra/algebra/primality_v6.pdf}{pdf}) \end{itemize} \end{document}