\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{Fernando Zalamea} \textbf{Fernando Zalamea Traba} is a mathematician at Universidad Nacional de Colombia at Bogot\'a{} with main interests in [[categorical logic]], non-classical logic, [[history]] and [[philosophy]] of mathematics. He is also writing essays in cultural studies. \hypertarget{on_the_difference_between_modern_and_contemporary_mathematics}{}\subsubsection*{{On the difference between modern and contemporary mathematics}}\label{on_the_difference_between_modern_and_contemporary_mathematics} Just as [[Albert Lautman]] identified 5 features characteristic of advanced (post mid-19th century) mathematics (1-5 in this list), Zalamea identifies an additional set of 5 characteristics (6-10 in this list) which emerge only in the mid 20th century and (in addition to 1-5, which are conserved) define contemporary mathematics: \begin{enumerate}% \item the \emph{complex hierarchisation} of various theories, irreducible to systems of \emph{intermediate} deduction; \item the \emph{richness} of the models, irreducible to linguistic manipulation; \item the \emph{unity} of structural methods and of conceptual polarites, beyond the effective multiplicity of models; \item the \emph{dynamics} of the creative activity, in a permanent back-and-forth between freedom and saturation, open to the Platonic division and the Platonic dialectic; \item the \emph{mathematically demonstrable relation} between what is multiple on a given level and what is singular on another, through a sophisticated lattice of mixed ascents and descents. \item the structural \emph{impurity} of arithmetic (Weil's conjectures, Langlands program, the theorems of Deligne, Faltings and Wiles etc.) \item the systematic \emph{geometrization} of all environments of mathematics (sheaves, homologies, cobordisms, geometrical logic etc.) \item the \emph{schematization} and the liberation from set theoretical, algebraic, and topological restrictions (groupoids, categories, schemas, topoi, motifs etc..) \item the \emph{fluxion} and deformation of the usual boundaries of mathematical structures (nonlinearity, noncommutativity, nonelemantarity, quantization etc) \item the \emph{reflexivity} of theories and models onto themselves (classification theory, fixed-point theorems, monstrous models, elementary/nonelementary classes etc..) \end{enumerate} \hypertarget{on_reintegrating_our_dispersed_culture}{}\subsubsection*{{On reintegrating our dispersed culture}}\label{on_reintegrating_our_dispersed_culture} from \begin{itemize}% \item \href{http://lnx.journalofpragmatism.eu/wp-content/uploads/2009/11/09-zalamea.pdf}{Peirce and Latin American ``razonabilidad'': forerunners of Transmodernity}, 2009 \end{itemize} \begin{quote}% A programmatic construction of a sheaf of partial cultural gluings could then be articulated around three main pieces of information: (I) Methodological forces: topological and transformational thinking, universal relatives, logic of sheaves, residuation theory, pendulum weaving, etc. (II) Cultural realizations: critical theory, metaphoric sedimentation, contaminating strata, mediating hierarchies, etc. (III) Projective goals: description of reflective residues (gluing local and global), dense fabrics (joining multipolar threads), plastic generic forms (allowing continuity and dislocating dualisms), etc. It is our contention that (i) Peirce's system and many mathematical tools, both modern (Riemann, Galois) and contemporary (Grothendieck), provide all the necessary theoretical background to support (I); (ii) Germany's critical dialectical tradition and Latin America's TRANS essayists give good examples of how to deal with (II); and (iii) the very ``end'' of Postmodernism as such, with its reformulations within Modernism and Transmodernism, show the imperative of the integrated relativity, plasticity and contamination sought in (III). Precise labours on these problems will take years, but, with many non-standard tools at hand, pragmaticism and ``razonabilidad'' can lead the way. \end{quote} \hypertarget{references}{}\subsubsection*{{References}}\label{references} \begin{itemize}% \item \href{http://www.docentes.unal.edu.co/fzalameat}{web} \item Fernando Zalamea, \emph{Filosof\'i{}a sint\'e{}tica de las matem\'a{}ticas contempor\'a{}neas}, (Spanish) Obra Selecta. Editorial Universidad Nacional de Colombia, Bogot\'a{}, 2009. 231 pp. \href{http://www.ams.org/mathscinet-getitem?mr=2599170}{MR2599170}, ISBN: 978-958-719-206-3, \href{<http://files.acervopeirceano.webnode.es/200000065-18c1b19bb9/Zalamea-Fil-Sint-Mat-Cont.pdf>}{pdf}. Transl. into English by Zachary Luke Fraser: \emph{Synthetic philosophy of contemporary mathematics}, Sep. 2011. \href{http://www.urbanomic.com/pub_syntheticmath.php}{bookpage}. Some excerpts are \href{http://ifile.it/2c3qgz5}{here} (pdf). \item G. Maddalena, F. Zalamea, \emph{A new analytic/synthetic/horotic paradigm. From mathematical gesture to synthetic/horotic reasoning.}, European journal of pragmatism and American philosphy 2009 \href{http://lnx.journalofpragmatism.eu/wp-content/uploads/2012/12/18_maddalena_zalamea.pdf}{pdf} \item Fernando Zalamea Traba, \emph{Ariada y Pen\'e{}lope. Redes y mixturas en el mundo contempor\'a{}neo}, 2004 \item Fernando Zalamea Traba, \emph{America -- una trama integral: Transversalidad, bordes y abismos en la cultura americana, siglos XIX y XX}, Biblioteca abierta. Estudios interdisciplinarios 2009 \item F. Zalamea, Versus Laboratory Seminar 24: \emph{Sheaf Logic \& Philosophical Synthesis}, mp3 audio file $<$https://archive.org/download/VersusLaboratorySeminar24SheafLogicPhilosophicalSynthesisWith/Sem24-FernandoZalamea\_02.mp3{\tt \symbol{62}} \item [[Giuseppe Longo]], \emph{\href{http://www.di.ens.fr/users/longo/files/PhilosophyAndCognition/Review-Zalamea-Grothendieck.pdf}{Synthetic Philosophy of Mathematics and Natural Sciences: Conceptual Analyses from a Grothendieckian Perspective. (Reflections on ``Synthetic Philosophy of Contemporary Mathematics'' by Fernando Zalamea).}} category: people, philosophy \end{itemize} [[!redirects Fernando Zalamea Traba]] \end{document}