\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{Fierz identity} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{spin_geometry}{}\paragraph*{{Spin geometry}}\label{spin_geometry} [[!include higher spin geometry - contents]] \hypertarget{representation_theory}{}\paragraph*{{Representation theory}}\label{representation_theory} [[!include representation theory - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{in_terms_of_cochains_on_superminkowski_spacetimes}{In terms of cochains on super-Minkowski spacetimes}\dotfill \pageref*{in_terms_of_cochains_on_superminkowski_spacetimes} \linebreak \noindent\hyperlink{BilinearFierzIdentities}{Bilinear Fierz identities}\dotfill \pageref*{BilinearFierzIdentities} \linebreak \noindent\hyperlink{QuadraticFierzIdentities}{Quadrilinear Fierz identities}\dotfill \pageref*{QuadraticFierzIdentities} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} What are called \emph{Fierz identities} in [[physics]] are the relations that hold between [[multilinear map|multilinear]] expression in [[spinors]]. For example for all [[Majorana spinors]] $\psi$ in Lorentzian spacetime dimension 4,5,7,11, then the following identity holds (example \ref{TheM2andM5CocyclesAsFierzIdentities} below): \begin{displaymath} \left(\overline{\psi} \wedge \Gamma_{a b} \psi\right) \wedge \left(\overline{\psi} \wedge \Gamma^b \psi\right) \;=\; 0 \,. \end{displaymath} (Here $\overline{(-)}$ denotes the Majorana conjugate, $\Gamma_a$ are a Clifford representations, the ``$\wedge$''-signs denotes symmetrization in the spinor components and summation over repeated indices is understood. The details of this are discussed \hyperlink{BilinearFierzIdentities}{below}.) In \hyperlink{DAuriaFreMainaRegge82}{D'Auria-Fr\'e{}-Maina-Regge 82} it was pointed out that all Fierz identities may be understood as expressing the product operation in the [[representation ring]] of the [[spin group]] (in some given dimension): for $\{S_i\}_{i \in I}$ denoting [[isomorphism classes]] of [[irreducible representations|irreducible]] [[spin representations]], then, by definition of [[irreps]], their [[tensor product of representations]] decomposes again as a [[direct sum]] of [[irreducible representations]] \begin{displaymath} S_i \otimes S_j = \underset{k}{\oplus} C_{i j}{}^k S_k \end{displaymath} with ``[[Clebsch-Gordan coefficients]]'' $C_{i j}{}^k$. These coefficients are effectively the Fierz identities. For example for Lorentzian dimension 11 with $(\tfrac{1}{2})^5$ denoting the unique irreducible [[Majorana spinor]] representation, then one finds (\hyperlink{DAuriaFre82b}{D'Auria-Fr\'e{} 82b, section 3}) that the symmetric part in the quadruple tensor product of this representation with itself decomposes as a direct sum of irreps as follows \begin{displaymath} \left\{ (\tfrac{1}{2})^5 \otimes (\tfrac{1}{2})^5 \otimes (\tfrac{1}{2})^5 \otimes (\tfrac{1}{2})^5 \right\}_{sym} \;\simeq\; (0)^5 \;\oplus\; (1)^3 (0)^2 \;\oplus\; (1)^4 (0) \;\oplus\; (1)^5 \;\oplus\; (2) (0)^4 \;\oplus\; (2)(1)(0)^3 \;\oplus\; (2)^2 (0)^3 \;\oplus\; (2)^2 (1)^3 \;\oplus\; (2)^5 \end{displaymath} where the symbols refer to [[Young diagrams]] canonically labeling representations (details are in example \ref{11dQuadrilinearCGCoefficients} below). The point is that the expression $\left(\overline{\psi} \wedge \Gamma_{a b} \psi\right) \wedge \left(\overline{\psi} \wedge \Gamma^b \psi\right)$ from above is a spinor quadrilinear which transforms in the vector representation $(1)(0)^4$ (due to its one free spacetime index). But that vector representation $(1)(0)^4$ is missing from the [[direct sum]] above, meaning that the spinor quadrilinear has vanishing components in this vector representation, hence that this expression vanishes identically. \hypertarget{in_terms_of_cochains_on_superminkowski_spacetimes}{}\subsection*{{In terms of cochains on super-Minkowski spacetimes}}\label{in_terms_of_cochains_on_superminkowski_spacetimes} We discuss Fierz identities as identities among multispinorial elements of the [[Chevalley-Eilenberg algebra]] $CE(\mathbb{R}^{d-1,1\vert N})$ of [[super-Minkowski spacetime]] $\mathbb{R}^{d-1,1\vert N}$, regarded as the super-translation [[supersymmetry]] [[super Lie algebra]]. In this form Fierz identities encode [[cocycles]] in the [[supersymmetry]] super-[[Lie algebra cohomology]], such as those which serve as [[higher WZW terms]] characterizing [[super p-branes]]. We follow \hyperlink{CDF}{Castellani-D'Auria-Fr\'e{} 82, section II.8}. \hypertarget{BilinearFierzIdentities}{}\subsubsection*{{Bilinear Fierz identities}}\label{BilinearFierzIdentities} Given a fixed [[real spin representation]] $N$, then the odd [[coordinates]] $\{\theta^\alpha\}_{\alpha = 1}^{dim_{\mathbb{R}}(N) }$ of the [[super Minkowski spacetime]] [[supermanifold]] $\mathbb{R}^{d-1,1\vert N}$ span, by construction, precisely that representation space, and hence so do the spinorial components of the [[super vielbein]] form \begin{displaymath} \psi^\alpha = \mathbf{d}\theta^\alpha \;\;\; \in \Omega^{\bullet}_{li}(\mathbb{R}^{d-1,1\vert N}) \simeq CE(\mathbb{R}^{d-1,1\vert N}) \,, \end{displaymath} since in the construction of [[super differential forms]] on $\mathbb{R}^{d-1,1\vert N}$, the de Rham operator $\mathbf{d}$ acts on the odd coordinates just formally, by sending the generator $\theta^\alpha$ to the new generator named $\mathbf{d} \theta^\alpha$. Therefore we may identify the [[spin representation]] $N$ with the [[linear span]] (over $\mathbb{R}$) of these elements \begin{displaymath} N \simeq \langle \mathbf{d}\theta^\alpha \rangle_{\alpha = 1}^{dim_{\mathbb{R}}(N) } \,, \end{displaymath} were the [[spin group]] acts on the elements on the right in the defining way (see at \emph{[[geometry of physics -- supersymmetry]]}): a spinorial rotation in a plane $\omega = \{\omega^{a b}\}$ by an angle $\alpha$ acts by \begin{displaymath} R_\omega(\psi) \coloneqq \exp(\tfrac{\alpha}{4} \omega^{a b} \Gamma_{a b} ) \psi \,. \end{displaymath} We may build new [[spin representations]] from this one by forming multilinear expressions in the [[super vielbein]]. For example the elements in $CE(\mathbb{R}^{d-1,1\vert N})$ of the form \begin{displaymath} \begin{aligned} \overline{\psi} \wedge \Gamma_a \psi &= \left(C_{\alpha \alpha'} \Gamma_a{}^{\alpha'}_{\beta}\right) \, \psi^\alpha \wedge \psi^{\beta} \\ & = \left(C_{\alpha \alpha'} \Gamma_a{}^{\alpha'}_{\beta}\right) \, \mathbf{d}\theta^\alpha \wedge \mathbf{d}\theta^\beta \end{aligned} \end{displaymath} span, as the spacetime index $a$ ranges in $\{0, 1, \cdots, d-1\}$, a $d$-dimensional [[real vector space]] \begin{displaymath} \left\langle \,\overline{\psi} \wedge \Gamma_a \psi\, \right\rangle_{a = 0}^{d-1} \end{displaymath} which still carries a linear [[action]] of the [[spin group]], induced from the spin action on the $\psi$-s: \begin{displaymath} \begin{aligned} R_\omega(\overline{\psi} \wedge \Gamma_a \psi) & = \overline{\left( \exp(\tfrac{\alpha}{4}\omega^{a b}\Gamma_{a b} ) \psi \right)} \wedge \Gamma_a \left( \exp(\tfrac{\alpha}{4}\omega^{a b}\Gamma_{a b} \psi ) \right) \\ & = \overline{\psi} \wedge \exp(-\tfrac{\alpha}{4} \omega^{a b} \Gamma_{a b}) \Gamma_a \exp(\tfrac{\alpha}{2}\omega^{a b} \Gamma_{a b}) \psi \\ & = \overline{\psi} \wedge (R_\omega(\Gamma_a)) \psi \end{aligned} \,. \end{displaymath} Of course similarly we obtain elements \begin{displaymath} \overline{\psi} \Gamma_{a_1 \cdots a_p} \psi \end{displaymath} which, if they are non-vanishing at all, span the representation \begin{displaymath} \wedge^p \mathbb{R}^d \end{displaymath} Now observe that we may say all this more abstractly as follows: \begin{enumerate}% \item the elements $(\psi \wedge \overline{\psi})^{\alpha \beta}$ span the symmetrized [[tensor product of representations]] \begin{displaymath} \{N \otimes N\}_{sym} \;\simeq\; \langle \, (\psi \wedge \overline{\psi})^\alpha{}_\beta \, \rangle_{\alpha,\beta = 1}^{dim_{\mathbb{R}}(N)} \end{displaymath} \item for given $p \in \mathbb{N}$, then the elements of the form $\overline{\psi} \wedge \Gamma_{a_1 \cdots a_p} \psi$ form a [[subrepresentation]] thereof, equivalent to the vector representation $\wedge^p\mathbb{R}^{d}$ \item hence there is a [[direct sum]] decomposition \begin{displaymath} \left\{N \otimes N\right\}_{sym} \;\simeq\; \underset{p \in \mathbb{N}}{\bigoplus} c_p \left(\wedge^p \mathbb{R}^d\right) \end{displaymath} in the [[category of representations]] of the [[spin group]], which expresses the (symmetrized) [[tensor product of representations]] of the [[Majorana spinor]] representation as a [[direct sum]] of skew-symmetrized tensor products of the vector representation. \end{enumerate} Indeed this direct sum decomposition is exhaustive: \begin{prop} \label{BilinearFierzDecomposition}\hypertarget{BilinearFierzDecomposition}{} For $d \in \mathbb{N}$ and $N$ a [[Majorana spinor]] representation of $Spin(d-1,1)$, then the following identity holds: \begin{displaymath} (\psi \wedge \overline{\psi})^\alpha{}_\beta \;=\; \tfrac{1}{dim_{\mathbb{R}}(N)} \left( \left( \overline{\psi}\psi \right) + \left( \overline{\psi} \Gamma_a \psi \right) (\Gamma^a)^\alpha{}_\beta + \tfrac{1}{2!} \left( \overline{\psi} \Gamma_{a_1 a_2} \psi \right) (\Gamma^{a_1 a_2})^\alpha{}_\beta + \cdots \right) \,. \end{displaymath} \end{prop} \begin{proof} By the discussion there, the [[Majorana spinor]] representation is a real sub-representation of a complex \emph{Dirac representation} $\mathbb{C}^{(2^\nu)}$. The latter has the special property that \begin{enumerate}% \item the [[Clifford algebra]] contains the full [[matrix algebra]]; \item for $p \geq 1$ the Clifford elements $\Gamma_{a_1 \cdots a_p}$ have vanishing [[trace]]. \end{enumerate} The first point implies that there exists coefficients $X^{a_1 \cdots a_p} \in \mathbb{C}$ for $p \in \mathbb{N}$ such that \begin{displaymath} \psi \wedge \overline{\psi} = \tfrac{1}{dim_{\mathbb{R}}(N)} \left( X + X^a \Gamma_a + X^{a b} \Gamma_{a b} + \cdots \right) \,. \end{displaymath} The second condition then implies that multiplying this expression with $\Gamma^{a_1 \cdots a_p}$ and taking the trace projects out the coefficient $X^{a_1 \cdots a_p}$: \begin{displaymath} \begin{aligned} X^{a_1 \cdots a_p} & = \frac{1}{p! dim_{\mathbb{R}}(N)} tr_N \left( \left( X + X^a \Gamma_a + X^{a b} \Gamma_{a b} + \cdots \right) \Gamma^{a_1 \cdots a_p} \right) \\ & = \tfrac{1}{p!} tr_N \left( \psi \wedge \overline{\psi} \, \Gamma^{a_1 \cdots a_p} \right) \\ & = \tfrac{1}{p!} \left( \overline \psi \wedge \Gamma^{a_1 \cdots a_p} \psi \right) \end{aligned} \,. \end{displaymath} Notice that it is the last step, identifying the trace over $\psi \wedge \overline{\psi} \Gamma^{a_1 \cdots a_p}$ with the $\psi$-$\psi$ component of the matrix $\Gamma^{a_1 \cdots a_p}$, where we use the \emph{symmetrization} of the spinor tensor product, namely the identity $\psi^\alpha \wedge \overline{\psi}_\beta = \overline{\psi}_\beta \wedge \psi^\alpha$. \end{proof} Some of the coefficients in prop. \ref{BilinearFierzDecomposition} may vanish identically. These are the \emph{bilinear Fierz identities}, of the form \begin{displaymath} \overline{\psi} \Gamma_{a_1 \cdots a_p} \psi = 0 \,. \end{displaymath} \begin{example} \label{}\hypertarget{}{} Let $d = 11$. Write $\mathbf{32}$ or $(\tfrac{1}{2})^5$ for the [[Majorana spinor]] representation of $Spin(d-1,1)$. Then \begin{displaymath} \left\{ (\tfrac{1}{2})^5 \otimes (\tfrac{1}{2})^5 \right\}_{sym} \;\simeq\; \underset{\simeq \mathbb{R}^d}{\underbrace{(1)^1 (0)^4}} \;\oplus\; \underset{\simeq \wedge^2 \mathbb{R}^d}{\underbrace{(1)^2 (0)^3}} \;\oplus\; \underset{\wedge^5 \mathbb{R}^d}{\underbrace{(1)^5}} \,. \end{displaymath} \end{example} (\hyperlink{DAuriaFre82b}{D'Auria-Fr\'e{} 82b (3.1)}) \begin{proof} Since we know from prop. \ref{BilinearFierzDecomposition} that the right hand side has to be some direct sum of representations of the form $\wedge^p \mathbb{R}^d$, it is sufficient to check that there is only one choice of sum such that [[dimensions]] match on both sides of the equation. Now the dimension of $\{N \otimes N\}_{sym}$ is that of the space of symmetric $32 \times 32$ matrices: \begin{displaymath} dim_{\mathbb{R}} \left( \{\mathbf{32} \otimes \mathbf{32}\}_{sym} \right) \;=\; \frac{1}{2} \left( 32 \times 33 \right) = 528 \end{displaymath} while the dimension of $\wedge^p \mathbb{R}^d$ is the [[binomial coefficient]] \begin{displaymath} dim_{\mathbb{R}}(\wedge^p \mathbb{R}^d) \;=\; \left( 11 \atop p \right) \,. \end{displaymath} Hence the claim follows from the fact that \begin{displaymath} \begin{aligned} 528 & = 11 + 55 + 462 \\ & = \left(11 \atop 1\right) + \left(11 \atop 2\right) + \left(11 \atop 5\right) \end{aligned} \,. \end{displaymath} \end{proof} \hypertarget{QuadraticFierzIdentities}{}\subsubsection*{{Quadrilinear Fierz identities}}\label{QuadraticFierzIdentities} Now we consider the [[direct sum]] decomposition of the [[tensor product of representations]] of \emph{four} copies of a [[spin representation]]. This yields the quadrilinear Fierz identities. \begin{example} \label{11dQuadrilinearCGCoefficients}\hypertarget{11dQuadrilinearCGCoefficients}{} The group $Spin(10,1)$ has [[rank of a Lie group|rank]] 5, and hence its [[irreducible representation|irreducible]] vector representations are labeled by [[Young diagrams]] consisting of five rows. For instance \begin{displaymath} (2)^2 (1)^2 (0) \end{displaymath} denotes the representation whose elements may be identified with tensors of the form \begin{displaymath} X_{\itexarray{ a_1 & a_2 \\ a_3 & a_4 \\ a_5 }} \end{displaymath} which are \begin{enumerate}% \item skew-symmetric in indices in the same column; \item symmetric and trace-less in indices in the same row. \end{enumerate} Write again $(\tfrac{1}{2})^5$ for the [[Majorana spinor]] representation. Then the following identity holds in the [[representation ring]]: \begin{displaymath} \left\{ (\tfrac{1}{2})^5 \otimes (\tfrac{1}{2})^5 \otimes (\tfrac{1}{2})^5 \otimes (\tfrac{1}{2})^5 \right\}_{sym} \;\simeq\; \left. \itexarray{ (0)^5 \\ \oplus \\ (2) (0)^4 \\ \oplus \\ (1)^3 (0)^2 \oplus (2)(1)(0)^3 \\ \oplus \\ (1)^4 (0) \oplus (2)^2 (0)^3 \\ \oplus \\ (1)^5 \\ \oplus \\ (2)^2 (1)^3 \\ \oplus \\ (2)^5 } \right. \end{displaymath} \end{example} (\hyperlink{DAuriaFre82b}{D'Auria-Fr\'e{} 82b (3.3)}) \begin{proof} As before, this is supposed to follow already by matching total dimensions on both sides \begin{displaymath} \frac{32 \times 33 \times 34 \times 35}{4 \times 3 \times 2} \;=\; \left. \itexarray{ 1 \\ + \\ 65 \\ + \\ 165 + 429 \\ + \\ 330 + 1144 \\ + \\ 462 \\ + \\ 17160 \\ + \\ 32604 } \right. \end{displaymath} \end{proof} More in detail we have the following decompositions, in the notation from \hyperlink{QuadraticFierzIdentities}{above}. \begin{equation} \left(\overline{\psi} \wedge \Gamma_{a_1} \psi\right) \wedge \left( \overline{\psi} \wedge \Gamma_{a_2} \psi \right) \;=\; X^{(\mathbf{65})}_{\itexarray{a_1 \\ a_2}} + \frac{1}{11} \delta_{\itexarray{a_1 a_2}}X^{(\mathbf{1})} \label{Fierz11dA}\end{equation} Here for instance the symbol $X^{(\mathbf{65})}_{\itexarray{a_1 \\ a_2}}$ denotes the projection of the term on the left into the direct summand given by the [[representation]] $(2)(0)^4$ of dimension $65$. Similarly: \begin{equation} \left(\overline{\psi} \wedge \Gamma_{a_1 a_2} \psi\right) \wedge \left(\overline{\psi} \wedge \Gamma_{a_3}\right) \;=\; X^{(\mathbf{429})}_{\itexarray{ a_1 & a_2 \\ a_3}} + X^{(\mathbf{165})}_{\itexarray{a_1 a_2 a_3}} \label{Fierz11dB}\end{equation} \begin{equation} \left( \overline{\psi}\Gamma_{a_1 a_2} \psi \right) \left( \overline{\psi} \Gamma_{a_3 a_4} \right) \;=\; X^{(\mathbf{1144})}_{\itexarray{a_1 a_2 \\ a_3 a_4}} + X^{(\mathbf{330})}_{\itexarray{a_1 a_2 a_3 a_4}} + \tfrac{4}{9}\delta_{\itexarray{ [a_1 \\ [a_3} } X^{(\mathbf{65})}_{\itexarray{a_2] \\ a_4] } } - \tfrac{2}{11} \delta_{\itexarray{a_1 & a_2 \\ a_3 & a_4}} X^{(\mathbf{1})} \label{Fierz11dC}\end{equation} \begin{equation} \left( \overline{\psi} \wedge \Gamma_{a_1 \cdots a_5} \psi \right) \wedge \left( \overline{\psi} \wedge \Gamma_{a_6} \psi \right) \;=\; \epsilon_{a_1 \cdots a_6}{}^{b_1 \cdots b_5} X^{(\mathbf{462})}_{b_1 \cdots b_5} + X^{(\mathbf{4290})}_{\itexarray{a_1 & \cdots & a_5 \\ a_6}} + \frac{15}{7} \delta_{a_6 [ a_1} X^{(\mathbf{330})}_{\itexarray{a_2 & \cdots & a_5}} \label{Fierz11dD}\end{equation} and some more. (\hyperlink{DAuriaFre82b}{D'Auria-Fr\'e{} 82b table 2}) As a corollary: \begin{example} \label{TheM2andM5CocyclesAsFierzIdentities}\hypertarget{TheM2andM5CocyclesAsFierzIdentities}{} For $d = 11$ then \begin{enumerate}% \item the following Fierz identity holds: \begin{displaymath} \left( \overline{\psi} \wedge \Gamma_{a b} \psi \right) \wedge \left( \overline{\psi} \wedge \Gamma^b \psi \right) \;= \; 0 \,. \end{displaymath} (this is the cocycle condition for the [[higher WZW term]] of the [[M2-brane]] (\hyperlink{BergshoeffSezginTownsend87}{Bergshoeff-Sezgin-Townsend 87}), \hyperlink{AETW87}{AETW 87}) \item the following Fierz identity holds: \begin{displaymath} \left( \overline{\psi} \wedge \Gamma_{a_1 \cdots a_4 b} \psi \right) \wedge \left( \overline{\psi} \wedge \Gamma^{b} \psi \right) \;=\; 3 \left( \overline{\psi} \Gamma_{[a_1 a_2} \psi \right) \wedge \left( \overline{\psi} \Gamma_{a_3 a_4]} \psi \right) \end{displaymath} (this is the cocycle condition for the [[higher WZW term]] of the [[M5-brane]] (\hyperlink{BLNPST97}{BLNPST 97}, \hyperlink{FSS15}{FSS 15})). \end{enumerate} \end{example} (\hyperlink{DAuriaFre82b}{D'Auria-Fr\'e{} 82b (3.13) and (3.28)}) \begin{proof} The first identity is the result of equation \eqref{Fierz11dB} after tracing over the indices $a_2$ and $a_3$. Under this trace both summands on the right of \eqref{Fierz11dB} vanish: $X^{(\mathbf{429})}_{\itexarray{ a_1 & a_2 \\ a_3}}$ because it is trace-free in indices in a column, and $X^{(\mathbf{165})}_{\itexarray{a_1 a_2 a_3}}$ because it is skew-symmetric in all indices. The second identity follows from taking the trace over the indices $a_5 and a_6$ in \eqref{Fierz11dD} and of skew-symmetrizing over all indices in \eqref{Fierz11dC}. By the symmetry properties of the tensors on the right of both equations, in both cases all tensors vanish except, in both cases, the contribution proportional to $X^{(\mathbf{330})}_{[a_1 \cdots a_3]}$, which both identities share. So it only remains to check that the proportionality factor is 3, as claimed. By writing out the skew-symmetrization in the last term in \eqref{Fierz11dD} one finds: \begin{displaymath} \begin{aligned} \frac{15}{7} \delta^{a_1 a_6} \delta_{a_6 [a_1} X^{(\mathbf{330})}_{a_2 \cdots a_5]} & = \frac{15}{7} \delta^{a_1}{}_{[a_1} X^{(\mathbf{330})}_{a_2 \cdots a_5]} \\ & = \frac{15}{7} \frac{1}{5!} \sum_{ \left\{\sigma \atop { {\text{permutation of}} \atop {\{1,\cdots , 5\}} } \right\}} (-1)^{\vert \sigma\vert } \delta^{a_1}{}_{a_{\sigma(1)}} X_{a_{\sigma(2)} \cdots a_{(\sigma(5))}} \\ & = \frac{15}{7} \frac{1}{5!} \sum_{\left\{\sigma \atop { {\text{permutation of}} \atop {\{1,\cdots , 4\}} } \right\} } (-1)^{\vert \sigma\vert } \left( \underset{= 11}{\underbrace{\delta^{a_1}_{a_1}}} X^{(\mathbf{330})}_{a_{\sigma(1)}\cdots a_{\sigma(4)}} - 4 \delta^{a_1}{}_{a_{\sigma(1)}} X_{a_1 a_{\sigma(2)} \cdots a_{\sigma(4)}} \right) \\ & = \frac{15}{7} (11-4) \frac{1}{5} \; \underset{X^{(\mathbf{330})}_{a_1\cdots a_4}}{ \underbrace{ \frac{1}{4!} \sum_{ \left\{ \sigma \atop { {\text{permutation of}} \atop {\{1,\cdots , 4\}} } \right\} } (-1)^{\vert \sigma\vert} X^{(\mathbf{330})}_{a_{\sigma(1)}\cdots a_{\sigma(4)}} } } \\ & = 3 \; X^{(\mathbf{330})}_{a_{\sigma(1)} \cdots a_{\sigma(4)}} \end{aligned} \end{displaymath} where we used that $X^{(\mathbf{330})}_{a_1 \cdots a_4}$ is already skew-symmetric in all indices. \end{proof} \begin{example} \label{QuadraticFierzIdentitiesIn5d}\hypertarget{QuadraticFierzIdentitiesIn5d}{} On D=5 [[number of supersymmetries|N = 2]] [[super Minkowski spacetime]] ([[5d supergravity]]) there are quadrilinear Fierz identities of this form: (\hyperlink{CDF}{Castellani-D'Auria-Fré 91 (III.5.50)}). \end{example} \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[Clebsch-Gordan coefficient]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} Named after [[Markus Fierz]]. The interpretation of Fierz identities as relations satisfied by [[Clebsch-Gordan coefficients]] in the [[representation ring]] of the [[spin group]] originates in \begin{itemize}% \item [[Riccardo D'Auria]], [[Pietro Fré]], E. Maina, [[Tullio Regge]] \emph{A New Group Theoretical Technique for the Analysis of Bianchi Identities and Its Application to the Auxiliary Field Problem of $D=5$ Supergravity}, Annals Phys. 139 (1982) 93 (\href{http://dx.doi.org/10.1016/0003-4916(82}{doi:10.1016/0003-4916(82)90007-0}90007-0), \href{http://inspirehep.net/record/167640/}{spire}) \end{itemize} where it was applied to $Spin(4,1)$ (relevant in [[5-dimensional supergravity]]). By this method the Fierz identities for $Spin(9,1)$ (relevant in [[heterotic supergravity]] and [[type II supergravity]]) are discussed in \begin{itemize}% \item [[Riccardo D'Auria]], [[Pietro Fré]], \emph{Geometric Structure of $N=1, D=10$ and $N=4, D=4$ Super Yang-Mills Theory}, Nucl. Phys. B196 (1982) 205 (\href{http://inspirehep.net/record/167639}{spire}) \end{itemize} see also appendix C of \begin{itemize}% \item [[José Figueroa-O'Farrill]], Emily Hackett-Jones, George Moutsopoulos, \emph{The Killing superalgebra of ten-dimensional supergravity backgrounds}, Class.Quant.Grav.24:3291-3308,2007 (\href{http://arxiv.org/abs/hep-th/0703192}{arXiv:hep-th/0703192}) \end{itemize} and the Fierz identities for $Spin(10,1)$ (relevant in [[11-dimensional supergravity]]) were tabulated in \begin{itemize}% \item [[Riccardo D'Auria]], [[Pietro Fré]], pages 12, 13 of \emph{[[GeometricSupergravity.pdf:file]]}, Nuclear Physics B201 (1982) ([[GeometricSupergravityErrata.pdf:file]]) \end{itemize} see also \begin{itemize}% \item S. Naito, K. Osada, T. Fukui, \emph{Fierz Identities and Invariance of Eleven-dimensional Supergravity Action}, Phys.Rev. D34 (1986) 536-552 (\href{http://inspirehep.net/record/236376/?ln=de}{spire}) \end{itemize} A textbook account of the representation ring method and summary of these results is in \begin{itemize}% \item [[Leonardo Castellani]], [[Riccardo D'Auria]], [[Pietro Fré]], chapter II.8 of \emph{[[Supergravity and Superstrings - A Geometric Perspective]]}, World Scientific (1991) \end{itemize} See also \begin{itemize}% \item C. C. Nishi, \emph{Simple derivation of general Fierz-type identities}, Am. J. Phys. 73 (2005) 1160-1163 (\href{http://arxiv.org/abs/hep-ph/0412245}{arXiv:hep-ph/0412245}) \item [[Calin Lazaroiu]], Elena-Mirela Babalic, Ioana-Alexandra Coman, \emph{The geometric algebra of Fierz identities in arbitrary dimensions and signatures}, JHEP09(2013)156 (\href{https://arxiv.org/abs/1304.4403}{arXiv:1304.4403}) \item Elena-Mirela Babalic, Ioana-Alexandra Coman, [[Calin Lazaroiu]], \emph{A unified approach to Fierz identities}, AIP Conf. Proc. 1564, 57 (2013) (\href{https://arxiv.org/abs/1303.1575}{arxiv:1303.1575}) \end{itemize} From the point of view of [[division algebras and supersymmetry]] the Fierz identities that give the vanishing of trilinear and of quadratic terms in spinors in certain dimensions are discussed in \begin{itemize}% \item [[John Huerta]], section 2.4 \emph{Division Algebras, Supersymmetry and Higher Gauge Theory} (\href{http://arxiv.org/abs/1106.3385}{arXiv:1106.3385}) \end{itemize} The recognition of some Fierz identities as cocycle conditions defining the [[higher WZW terms]] of the [[super p-branes]] is due to \begin{itemize}% \item [[Marc Henneaux]], Luca Mezincescu, \emph{A Sigma Model Interpretation of Green-Schwarz Covariant Superstring Action}, Phys.Lett. B152 (1985) 340 (\href{http://inspirehep.net/record/15922?ln=en}{web}) \item [[Eric Bergshoeff]], [[Ergin Sezgin]], [[Paul Townsend]], \emph{Supermembranes and eleven dimensional supergravity}, Phys.Lett. B189 (1987) 75-78, In [[Mike Duff]], (ed.), \emph{[[The World in Eleven Dimensions]]} 69-72 (\href{http://streaming.ictp.trieste.it/preprints/P/87/010.pdf}{pdf}, \href{http://inspirehep.net/record/248230?ln=en}{spire}) \item Anna Ach\'u{}carro, [[Jonathan Evans]], [[Paul Townsend]], [[David Wiltshire]], \emph{Super $p$-Branes}, Phys. Lett. B \textbf{198} (1987) 441 (\href{http://inspirehep.net/record/22286?ln=en}{spire}) \item [[Igor Bandos]], [[Kurt Lechner]], Alexei Nurmagambetov, [[Paolo Pasti]], [[Dmitri Sorokin]], Mario Tonin, \emph{Covariant Action for the Super-Five-Brane of M-Theory}, Phys. Rev. Lett. 78 (1997) 4332-4334 (\href{http://arxiv.org/abs/hep-th/9701149}{arXiv:hep-th/9701149}) \item [[nLab:Domenico Fiorenza]], [[nLab:Hisham Sati]], [[nLab:Urs Schreiber]], \emph{[[schreiber:The WZW term of the M5-brane|The WZW term of the M5-brane and differential cohomotopy]]}, J. Math. Phys. 56, 102301 (2015) (\href{https://arxiv.org/abs/1506.07557}{arXiv:1506.07557}) \end{itemize} [[!redirects Fierz identities]] \end{document}