\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{Fivebrane structure} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{cohomology}{}\paragraph*{{Cohomology}}\label{cohomology} [[!include cohomology - contents]] \hypertarget{higher_spin_geometry}{}\paragraph*{{Higher spin geometry}}\label{higher_spin_geometry} [[!include higher spin geometry - contents]] \hypertarget{string_theory}{}\paragraph*{{String theory}}\label{string_theory} [[!include string theory - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} The notion of \emph{Fivebrane structure} is the next higher analog of that of [[spin structure]] and [[string structure]]. Recall from the discussion there that a [[string structure]] on [[manifold]] $X$ with [[spin structure]] is a lift $\hat g$ of the classifying map $g : X \to B Spin(n)$ of the [[tangent bundle]] associated to a [[Spin group]]-[[principal bundle]] through the next step in the [[Whitehead tower]] of $O(n)$, called $B String(n)$ -- the [[delooping]] of the [[String group]]: \begin{displaymath} \itexarray{ && B String(n) \\ & {\hat g}\nearrow & \downarrow \\ X &\stackrel{g}{\to}& B Spin(n) } \,. \end{displaymath} The names ``Spin'' and ``String'' both derive from the role these structures play in [[quantum field theory]]: a [[spin structure]] is required on $X$ for it to serve as a target space for spinning particles (superparticles), while a [[string structure]] is required for it to serves as a target for ``spinning strings'' -- superstrings -- (see [[heterotic string theory]] for more). Topologists just say (said) $O(n)\langle 2\rangle$ for $Spin(n)$ and $O(n)\langle 6\rangle$ for $String(n)$, respectively. They wrote $O(n)\langle 8\rangle$ for the next step in the [[Whitehead tower]] of $O(n)$ (note that this is only the \emph{next} step for $n \gt 6$; for lower $n$ there are intermediate steps, as can be seen in the table at \href{orthogonal+group#HomotopyGroups}{orthogonal group}). It was [[Hisham Sati]] who first realized that a lift of the [[tangent bundle]] $T X$ to this highly connected structure group is related to $X$ serving as a target for ``spinning 5-branes'' -- super-5-branes -- in what is called [[dual heterotic string theory]]. Following the history of the term [[String group]] he gave the topological group $O(n)\langle 8\rangle$ the name [[Fivebrane group]]: $Fivebrane(n)$. Accordingly, a \textbf{Fivebrane structure(n)} on a manifold $X$ with [[string structure]] is a lift of $\hat g : X \to B String(n)$ to $\hat \hat g$ \begin{displaymath} \itexarray{ && B Fivebrane(n) \\ & {\hat \hat g}\nearrow & \downarrow \\ X &\stackrel{\hat g}{\to}& B String(n) } \,. \end{displaymath} The obstruction class to this lift is a fractional multiply of the second [[Pontrjagin class]]. Namely the generator of $H^8(B String, \mathbb{Z})$ is $\frac{1}{6}p_2$, \begin{displaymath} \itexarray{ B String &\stackrel{1/6 p_2}{\to}& B^8 \mathbb{Z} \\ \downarrow && \downarrow^{\mathrlap{\cdot 6}} \\ B SO &\stackrel{p_2}{\to}& B^8 \mathbb{Z} } \,. \end{displaymath} (stated in \hyperlink{SSS2}{SSS2}, then in \hyperlink{DHH}{DHH}, also follows from the [[index theory]] argument leading to (3.3) in \hyperlink{Witten96}{Witten 96}). The [[Fivebrane group]] is the [[loop space object]] of the corresponding [[homotopy fiber]] \begin{displaymath} \itexarray{ B Fivebrane &\to& * \\ \downarrow && \downarrow \\ B String &\stackrel{\frac{1}{6}}{\to}& B^7 U(1)& } \end{displaymath} and so, by the [[universal property]] of the [[homotopy pullback]], String-structures $\hat g$ lift to Fivebrane structures precisely if $\frac{1}{6}p_2(\hat g)$ is trivial in [[cohomology]] \begin{displaymath} \itexarray{ && B Fivebrane &\to& * \\ & {}^{\mathllap{\hat \hat g}}\nearrow & \downarrow && \downarrow \\ X &\stackrel{\hat g}{\to}& B String &\stackrel{\frac{1}{6}p_2}{\to}& B^7 U(1) } \,. \end{displaymath} In (\hyperlink{SSS2}{SSS2}) the physical interpretation of this topological lift was established by comparison with known [[quantum anomaly]] cancellaton conditions in [[dual heterotic string theory]]. The term ``Fivebrane'' apparently quickly caught on in the mathematical community, for instance in (\hyperlink{DHH}{DouglasHenriquesHill}). Since [[gauge theory]] is not just about [[principal bundle]]s, but about principal [[connection on a bundle|bundles with connection]], what matters in physics is not just the topological Spin-, String- and Fivebrane structures, but their refinement to [[schreiber:differential nonabelian cohomology]]. See [[differential fivebrane structure]]. \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[spin structure]], [[spin connection]]; \item [[string structure]], [[differential string structure]]; \item \textbf{fivebrane structure}, [[differential fivebrane structure]] \end{itemize} [[!include higher spin structure - table]] \hypertarget{references}{}\subsection*{{References}}\label{references} The notion was introduced in \begin{itemize}% \item [[Hisham Sati]], [[Urs Schreiber]], [[Jim Stasheff]], \emph{[[schreiber:Fivebrane structures]]} , Reviews in mathematical physics, 10 (2009) 1197 (\href{http://arxiv.org/abs/0805.0564}{arXiv:0805.0564}) \end{itemize} It is briefly mentioned in \begin{itemize}% \item [[Chris Douglas]], [[André Henriques]], Michael Hill, \emph{Homological obstructions to string orientations} (\href{http://arxiv.org/abs/0810.2131}{arXiv}) \end{itemize} Related structures are also mentioned around p. 9 of \begin{itemize}% \item [[Edward Witten]], \emph{On Flux Quantization In M-Theory And The Effective Action} (\href{http://arxiv.org/abs/hep-th/9609122}{arXiv:hep-th/9609122}) \end{itemize} The differential refinement is discussed in \begin{itemize}% \item [[Hisham Sati]], [[Urs Schreiber]], [[Jim Stasheff]], \emph{[[schreiber:Twisted Differential String and Fivebrane Structures]]} (\href{http://arxiv.org/abs/0910.4001}{arXiv:0910.4001}) \end{itemize} and \begin{itemize}% \item [[Domenico Fiorenza]], [[Urs Schreiber]], [[Jim Stasheff]], \emph{[[schreiber:Cech Cocycles for Differential characteristic Classes]]} (\href{http://arxiv.org/abs/1011.4735}{arXiv:1011.4735}) \end{itemize} Articles that use Fivebrane structures include \begin{itemize}% \item Boris Botvinnik, [[Mohammed Labbi]], \emph{Highly connected manifolds of positive $p$-curvature}, Transactions of the AMS, Trans. Amer. Math. Soc. 366 (2014), 3405-3424 (\href{http://arxiv.org/abs/1201.1849}{arXiv:1201.1849}, \href{https://doi.org/10.1090/S0002-9947-2014-05939-4}{doi:10.1090/S0002-9947-2014-05939-4}) \end{itemize} [[!redirects fivebrane structure]] [[!redirects Fivebrane structures]] \end{document}