\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{Fox derivative} Let $F$ be a [[free group]] with basis $X = \{ x_i\}_{i\in I}$ and $\mathbb{Z}F$ the integer [[group ring]] of $F$. Differentiation or [[derivation on a group|derivation]], $D$, in this context is defined using a sort of nonsymmetric analogue of the Leibniz rule: it is an additive map $D:\mathbb{Z}F\to\mathbb{Z}F$ such that for all $u,v\in F$, \begin{displaymath} D(u v) = D(u) + u D(v). \end{displaymath} The \textbf{Fox partial derivatives} $\frac{\partial}{\partial x_i}$ are defined by the rules \begin{displaymath} \frac{\partial 1}{\partial x_i} = 0 \end{displaymath} \begin{displaymath} \frac{\partial x_i}{\partial x_i} = 1 \end{displaymath} extended to the products $u = y_1\ldots y_n$ where $y_i = x_k$ or $y_i=x_k^{-1}$ for some $k = k(i)$ by the formula \begin{displaymath} \frac{\partial u }{\partial x_i} = \sum_{s=1}^n y_1\cdots y_{s-1} \frac{\partial y_s }{\partial x_i}. \end{displaymath} This then implies that \begin{displaymath} \frac{\partial x_i^{-1}}{\partial x_i} = -x_i^{-1} \end{displaymath} \begin{displaymath} \frac{\partial x_j^{\pm 1}}{\partial x_i} = 0,\;\;i\neq j \end{displaymath} Notice that the summands on the right-hand side are ``of different length''. The lemma given in [[derivation on a group]] allows the following alternative form of the above definition to be given: \begin{udefn} For each $x \in X$, let \begin{displaymath} \frac{\partial}{\partial x} : F \to \mathbb{Z}F \end{displaymath} be defined by \begin{enumerate}% \item for $y \in X$, \begin{displaymath} \frac{\partial y}{\partial x} = 1\,\,\, if\,\,\, x = y\,\,\, and \,\,\,= 0 \,\,\, y \neq x; . \end{displaymath} \item for any words, $w_1,w_2 \in F$, \begin{displaymath} \frac{\partial}{\partial x}(w_1w_2) = \frac{\partial}{\partial x}w_1 + w_1\frac{\partial}{\partial x}w_2. \end{displaymath} \end{enumerate} Then these uniquely determine the Fox derivative of $F$ with respect to $x$. \end{udefn} The Fox derivatives give a way of expanding any derivation (differentiation) defined on $F$. For every differentiation \begin{displaymath} D(u)=\sum_{i\in I} \frac{\partial u }{\partial x_i} D(x_i) \end{displaymath} (This is a finite sum since $u$ will only involve finitely many of the generators.) In particular if $\epsilon:\mathbb{Z}F\to\mathbb{Z}$ is the augmentation map given by $\epsilon:x_i\mapsto 1$, then the differentiation $u\mapsto u-\epsilon(u) 1_F$ satisfies \begin{displaymath} u - \epsilon(u) 1_F = \sum_i \frac{\partial u }{\partial x_i} (x_i -1) \end{displaymath} hence it belongs to the left [[ideal]] in $\mathbb{Z}F$ which is generated by $(x_i-1)$. This construction is important in [[combinatorial group theory]], particularly in the study of [[free product]]s of groups and the study of [[metabelian group]]s. Given any group $G$ with a [[group presentation|presentation]] $\langle X; R\rangle = F/N$ such that $F=\langle X\rangle$ is the [[free group]] on the set of letters $X$ and $N$ the [[normal subgroup|normal closure]] of the set of relations $R$, let $\bar{G}:=G/[G,G]$, let $\phi:F\to G$, $\bar\phi:F\to \bar{G}$ be the canonical projections; denote by the same letter their linearizations for group rings $\phi:\mathbb{Z}F\to \mathbb{Z}G$ and $\bar\phi:\mathbb{Z}F\to\mathbb{Z}\bar{G}$. The \textbf{Jacobi matrix} of the presentation is the matrix \begin{displaymath} J = \left(\phi(\frac{\partial r_i}{\partial x_j})\right) \end{displaymath} and also the projected matrix $\bar{J}$ which is the image of $J$ as a matrix over $\mathbb{Z}\bar{G}$. The \textbf{determinant ideal} $D_i$ of order $i$ of the matrix $\bar{J}$ is the ideal of $\mathbb{Z}\bar{G}$ generated by all minors (= determinants of submatrices) of size $i\times i$ in $\bar{J}$. The sequence $D_1,D_2,\ldots$ is invariant (up to some technical details), that is does not depend on the presentation. In the case when $G=\pi(S)$ where $S$ is the complement of a [[knot]], $\bar{G}$ is an infinite cyclic group. Let $t$ be its generator; then the highest nonzero determinant ideal (of $\bar{J}$) in $\mathbb{Z}\bar{G}$ is a principal ideal, hence it has a normalized (in the sense that the heighest coefficient is $1$) generator, which is a polynomial in $t$. This polynomial is an invariant of the knot, the \textbf{Alexander polynomial} of the knot. \hypertarget{references}{}\subsubsection*{{References}}\label{references} The orginal articles include: \begin{itemize}% \item R. H. Fox, \emph{Free differential calculus I: Derivation in the free group ring}, Annals Math. (2) \textbf{57}, 547--560 (1953) \href{http://dx.doi.org/10.2307/1969736}{doi:10.2307/1969736} \item R. H. Fox, \emph{Free differential calculus II: The Isomorphism Problem of Groups}, Annals Math. (2) \textbf{59} 196--210 (1954); \emph{III:Subgroups}, Annals Math. (2) \textbf{64}, 407--419; IV: \textbf{71}, 408--422 (1960) \end{itemize} with a nice introduction in \begin{itemize}% \item \begin{itemize}% \item [[R. H. Crowell]] and [[R. H. Fox]], Introduction to Knot Theory, Springer, Graduate Texts 57, 1963. \end{itemize} \end{itemize} see also \begin{itemize}% \item B. Chandler, [[W. Magnus]], \emph{The history of combinatorial group theory: a case study in the history of ideas}, Springer 1982 \item [[R. Lyndon]], [[P. Schupp]], \emph{Combinatorial group theory}, Ch. II.3, Springer 1977(Russian transl. Mir, Moskva 1980) \end{itemize} and more recently \begin{itemize}% \item Valentino Zocca, \emph{Fox calculus, symplectic forms and moduli spaces}, Trans. AMS\_\_350\_\_, 4, (1998) 1429-1466, \href{http://www.ams.org/journals/tran/1998-350-04/S0002-9947-98-02052-2/S0002-9947-98-02052-2.pdf}{pdf} \item \href{http://en.wikipedia.org/wiki/Fox_derivative}{en.wikipedia:Fox derivative} \end{itemize} Connections to double Poisson structures/brackets are discussed in \begin{itemize}% \item Gwenael Massuyeau, [[Vladimir Turaev]], \emph{Quasi-Poisson structures on representation spaces of surfaces}, \href{http://arxiv.org/abs/1205.4898}{arxiv/1205.4898}, \href{http://www-irma.u-strasbg.fr/~massuyea/papers/double_brackets.pdf}{irma pdf} \end{itemize} See also \begin{itemize}% \item Gwenael Massuyeau, Vladimir Turaev, \emph{Fox pairings and generalized Dehn twists}, \href{http://arxiv.org/abs/1109.5248}{arxiv/1109.5248} \end{itemize} For a pro-$l$-version of Fox calculus see \begin{itemize}% \item \emph{Pro-$l$ Fox free differential calculus}, section 8.3 of [[Masanori Morishita]], \emph{Knots and primes: an introduction to arithmetic topology}, Springer 2012 \end{itemize} [[!redirects Fox derivatives]] \end{document}