\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{Freyd cover} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{category_theory}{}\paragraph*{{Category theory}}\label{category_theory} [[!include category theory - contents]] \hypertarget{discrete_and_concrete_objects}{}\paragraph*{{Discrete and concrete objects}}\label{discrete_and_concrete_objects} [[!include discrete and concrete objects - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{remark}{Remark}\dotfill \pageref*{remark} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{relation_to_the_initial_topos}{Relation to the initial topos}\dotfill \pageref*{relation_to_the_initial_topos} \linebreak \noindent\hyperlink{AsALocalTopos}{As a local topos}\dotfill \pageref*{AsALocalTopos} \linebreak \noindent\hyperlink{as_a_fibration}{As a fibration}\dotfill \pageref*{as_a_fibration} \linebreak \noindent\hyperlink{related_entries}{Related entries}\dotfill \pageref*{related_entries} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} The \textbf{Freyd cover} $\overline{\mathcal{T}}$ of a [[topos]] $\mathcal{T}$, or more generally of a [[category]] with a [[terminal object]], is a way to turn $\mathcal{T}$, viewed as an `abstract' category, into a `concrete' category of structured sets by sewing it together with [[Set]] along the [[global section functor]]. As $\overline{\mathcal{T}}$ comes equipped with two well-behaved projection functors the resulting category has many good logical properties making the construction an important tool in [[type theory]] and theoretical computer science. The Freyd cover is sometimes known as the \textbf{Sierpinski cone} or \textbf{scone}, because in [[topos theory]] it behaves similarly to the [[cone]] on a space, but with the [[interval]] $[0,1]$ replaced by the [[Sierpinski space]]. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} Let $\mathcal{T}$ be a category with a terminal object and $\Gamma = \mathcal{T} (1, -)$ the global section functor . The \textbf{Freyd cover} of $\mathcal{T}$ is the category $\overline{\mathcal{T}}$ whose objects are triples $(X, \xi, U)$ where: \begin{itemize}% \item $X$ is a set \item $U$ is an object of $\mathcal{T}$ \item $\xi$ is a function $X \to \Gamma (U)$ \end{itemize} A morphism from $(X,\xi, U)$ to $(Y,\eta , V)$ is a pair of morphisms $(\varphi :X\to Y, t:U\to V)$ with $\varphi\in Set$ and $t\in \mathcal{T}$ such that $\eta\varphi=\Gamma(t)\xi$. \hypertarget{remark}{}\subsubsection*{{Remark}}\label{remark} The construction is a special case of [[Artin gluing]]: i.e. $\overline{\mathcal{T}}$ is the [[comma category]] $Set \downarrow \Gamma$ with $\Gamma = \mathcal{T} (1, -)$. \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{relation_to_the_initial_topos}{}\subsubsection*{{Relation to the initial topos}}\label{relation_to_the_initial_topos} One of the first applications of the Freyd cover was to deduce facts about the initial topos (initial with respect to [[logical morphism|logical morphisms]] --- also called the [[free topos]]). They were originally proved by syntactic means; the conceptual proofs of the lemma and theorem below are due to Freyd. \begin{lemma} \label{}\hypertarget{}{} For any category $C$ with a [[terminal object]] $\mathbf{1}$, the terminal object of the Freyd cover $\widehat{C}$ is [[small-projective]], i.e., the representable $\Gamma = \widehat{C}(1, -) \colon \widehat{C} \to Set$ preserves any colimits that exist. \end{lemma} \begin{proof} To check that $\Gamma^{op} \colon \widehat{C}^{op} \to Set^{op}$ preserves limits, it suffices to check that the composite $\backslash$begin\{center\} $\backslash$begin\{tikzcd\} $\backslash$widehat\{C\}{\tt \symbol{94}}\{op\} $\backslash$arrowr, ``$\backslash$Gamma{\tt \symbol{94}}\{op\}'' \& $\backslash$mathrm\{Set\}{\tt \symbol{94}}\{op\} $\backslash$arrowr, ``2{\tt \symbol{94}}-'' \& $\backslash$mathrm\{Set\} $\backslash$end\{tikzcd\} $\backslash$end\{center\} preserves limits, because the contravariant power set functor $P = 2^-$ is monadic. But it is easily checked that this composite is the contravariant representable given by $(2, \mathbf{1}, 2 \to \Gamma(\mathbf{1}))$. \end{proof} \begin{theorem} \label{}\hypertarget{}{} The terminal object in the initial topos $\mathcal{T}$ is [[connected object|connected]] and [[projective object|projective]] in the sense that $\Gamma = \hom(1, -) \colon \mathcal{T} \to Set$ preserves finite colimits. \end{theorem} \begin{proof} We divide the argument into three segments: \begin{itemize}% \item The hom-functor preserves finite limits, so by general properties of Artin gluing, the Freyd cover $\widehat{\mathcal{T}}$ is also a topos. Observe that $\mathcal{T}$ is equivalent to the slice $\widehat{\mathcal{T}}/M$ where $M$ is the object $(\emptyset, \mathbf{1}, \emptyset \to \Gamma(\mathbf{1}))$. Since pulling back to a slice is a logical functor, we have a logical functor \begin{displaymath} \pi \colon \widehat{\mathcal{T}} \to \mathcal{T} \end{displaymath} Since $\mathcal{T}$ is initial, $\pi$ is a retraction for the unique logical functor $i \colon \mathcal{T} \to \widehat{\mathcal{T}}$. \item We have maps $\mathcal{T}(1, -) \to \widehat{\mathcal{T}}(i 1, i-) \cong \widehat{\mathcal{T}}(1, i-)$ (the isomorphism comes from $i 1 \cong 1$, which is clear since $i$ is logical), and $\widehat{\mathcal{T}}(1, i-) \to \mathcal{T}(\pi 1, \pi i-) \cong \mathcal{T}(1, -)$ since $\pi$ is logical and retracts $i$. Their composite must be the identity on $\mathcal{T}(1, -)$, because there is only one such endomorphism, using the Yoneda lemma and terminality of $1$. \end{itemize} Finally, since $\mathcal{T}(1, -)$ is a retract of a functor $\widehat{\mathcal{T}}(1, i-)$ that preserves finite colimits (by the lemma, and the fact that the logical functor $i$ preserves finite colimits), it must also preserve finite colimits. \end{proof} This is important because it implies that the [[internal logic]] of the free topos (which is exactly ``intuitionistic higher-order logic'') satisfies the following properties: \begin{itemize}% \item The \emph{disjunction property}: if ``P [[or]] Q'' is provable in the empty [[context]], then either P is so provable, or Q is so provable. (Note that this clearly fails in the presence of [[excluded middle]].) \item The \emph{existence property}: if ``there exists an $x\in A$ such that $P(x)$'' is provable in the empty context, then there exists a [[global element]] $x\colon 1\to A$ such that $P(x)$ is provable in the empty context. (Again, this is clearly a [[constructive mathematics|constructivity]] property.) \item The \emph{negation property}: False is not provable in the empty context. \item All numerals in the free topos are ``standard'', i.e., the global sections functor $\Gamma = \hom(1, -): \mathcal{T} \to Set$ preserves the [[natural numbers object]] $N$ (because $N$ can be characterized in terms of finite colimits and $1$, by a theorem of Freyd). \end{itemize} \hypertarget{AsALocalTopos}{}\subsubsection*{{As a local topos}}\label{AsALocalTopos} The Freyd cover of a [[topos]] is a [[local topos]], and in fact freely so. Every local topos is a [[retract]] of a Freyd cover. See (\hyperlink{Johnstone}{Johnstone, lemma C3.6.4}). \hypertarget{as_a_fibration}{}\subsubsection*{{As a fibration}}\label{as_a_fibration} The Freyd cover $\overline{\mathcal{T}}$ is fibered over $\mathcal{T}$ as it arises equivalently by change of base of the [[codomain fibration]] of [[Set]] along the [[global section functor]] $\Gamma$. See (\hyperlink{Jacobs}{Jacobs, p.57}). \hypertarget{related_entries}{}\subsection*{{Related entries}}\label{related_entries} \begin{itemize}% \item [[Artin gluing]] \item [[comma category]] \item [[Sierpinski topos]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} Some of the above material is taken from \begin{itemize}% \item [[Tom Leinster]], \href{http://mathoverflow.net/questions/12136/freyd-cover-of-a-category}{reply at MathOverflow} \end{itemize} The following two n-caf\'e{} blog posts provide an introductory discussion of the scone construction from a geometric and a logical perspective: \begin{itemize}% \item [[Mike Shulman]], \emph{Discreteness, Concreteness, Fibrations, and Scones} , November 2011. (\href{https://golem.ph.utexas.edu/category/2011/11/discreteness_concreteness_fibr.html}{link}) \item [[Mike Shulman]], \emph{Scones, Logical Relations, and Parametricity} , April 2013. (\href{https://golem.ph.utexas.edu/category/2013/04/scones_logical_relations_and_p.html}{link}) \end{itemize} You can find more on [[Artin gluing]] in this important (and nice) paper: \begin{itemize}% \item [[Aurelio Carboni]], [[Peter Johnstone]], \emph{Connected limits, familial representability and Artin glueing} , Mathematical Structures in Computer Science \textbf{5} (1995) pp.441-459. \end{itemize} plus \begin{itemize}% \item [[Aurelio Carboni]], [[Peter Johnstone]], \emph{Corrigenda to `Connected limits\ldots{}'} , Mathematical Structures in Computer Science \textbf{14} (2004) pp.185-187. \end{itemize} See also section C3.6 of \begin{itemize}% \item [[Peter Johnstone]], \emph{[[Sketches of an Elephant]] vol. 2} . Oxford UP 2002. \item [[Bart Jacobs]], \emph{Categorical Logic and Type Theory} , Elsevier Amsterdam 1999. \end{itemize} The following paper studies logical properties of the Freyd cover: \begin{itemize}% \item [[Ieke Moerdijk]], \emph{On the Freyd Cover of a Topos} , Notre Dame J. Formal Logic \textbf{24} no.4 (1983) pp.517-526. (\href{http://projecteuclid.org/download/pdf_1/euclid.ndjfl/1093870454}{pdf}) \end{itemize} The argument given above for the properties of the free topos is an amplification of \begin{itemize}% \item [[Peter Freyd|P. Freyd]], A. Scedrov, \emph{[[Categories, Allegories]]} , North-Holland Amsterdam 1990. (1.(10)31, p.192) \end{itemize} For more on the free topos and the first appearance in print of Freyd's observation see \begin{itemize}% \item [[Joachim Lambek|J. Lambek]], P. J. Scott, \emph{Intuitionist Type Theory and the Free Topos} , JPAA \textbf{19} (1980) pp.215-257. \end{itemize} [[!redirects scone]] [[!redirects Sierpinski cone]] \end{document}