\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{Frobenius morphism} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{arithmetic_geometry}{}\paragraph*{{Arithmetic geometry}}\label{arithmetic_geometry} [[!include arithmetic geometry - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{for_fields}{For fields}\dotfill \pageref*{for_fields} \linebreak \noindent\hyperlink{of_schemes}{Of schemes}\dotfill \pageref*{of_schemes} \linebreak \noindent\hyperlink{for_sheaves_on_}{For sheaves on $C Ring ^{op}$}\dotfill \pageref*{for_sheaves_on_} \linebreak \noindent\hyperlink{InTermsOfSymmetricProducts}{In terms of symmetric products}\dotfill \pageref*{InTermsOfSymmetricProducts} \linebreak \noindent\hyperlink{ForEInfinityRings}{For $E_\infty$-Rings}\dotfill \pageref*{ForEInfinityRings} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{for_fields_2}{For fields}\dotfill \pageref*{for_fields_2} \linebreak \noindent\hyperlink{AsElementsOfGaloisGroup}{As elements of the Galois group}\dotfill \pageref*{AsElementsOfGaloisGroup} \linebreak \noindent\hyperlink{for_schemes}{For schemes}\dotfill \pageref*{for_schemes} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} In [[number theory]], [[Galois theory]] and [[arithmetic geometry]] in [[prime number|prime]] [[characteristic]] $p$, the \emph{Frobenius morphism} is the [[endomorphism]] acting on [[algebras]], [[function algebras]], [[structure sheaves]] etc., which takes each [[ring]]/[[associative algebra|algebra]]-element $x$ to its $p$th power \begin{displaymath} x^p = \underbrace{x \cdot x \cdots x}_{p \; factors} \;. \end{displaymath} It is precisely in [[positive characteristic]] $p$ that this operation is indeed an algebra [[homomorphism]] (``[[freshman dream arithmetic]]''). The Frobenius map is the shadow of the [[power operations]] in [[multiplicative cohomology theory]]/[[higher algebra]] (\hyperlink{Lurie}{Lurie, remark 2.2.7}). The presence of the Frobenius endomorphism in characteristic $p$ is a fundamental property in [[arithmetic geometry]] that controls many of its deep aspects. Notably [[zeta functions]] are typically expressed in terms of the [[action]] of the Frobenius endomorphisms on [[cohomology groups]] and so it features prominently for instance in the [[Weil conjectures]]. In [[Borger's absolute geometry]] lifts of Frobenius endomorphisms through [[base change]] for all primes at once -- in the sense of \emph{\href{Lambda-ring#LambdaRingByFrobeniusLifts}{Lambda-ring structure}} -- is interpreted as encoding [[descent]] data from traditional [[arithmetic geometry]] over [[Spec(Z)]] down to the ``absolute'' geometry over ``[[F1]]''. See at \emph{\href{Borger%27s+absolute+geometry#Motivation}{Borger's absolute geometry -- Motivation}} for more on this. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} \begin{quote}% this entry may need attention \end{quote} \hypertarget{for_fields}{}\subsection*{{For fields}}\label{for_fields} Let $k$ be a [[field]] of positive [[characteristic]] $p$. The \textbf{Frobenius morphism} is an [[endomorphism]] of the field $F \colon k \to k$ defined by \begin{displaymath} F(a) \coloneqq a^p \,. \end{displaymath} Notice that this is indeed a [[homomorphism]] of fields: the identity $(a b)^p=a^p b^p$ evidently holds for all $a,b\in k$ and the [[characteristic]] of the field is used to show $(a+b)^p=a^p+b^p$. \hypertarget{of_schemes}{}\subsubsection*{{Of schemes}}\label{of_schemes} Suppose $(X,\mathcal{O}_X)$ is an $S$-[[scheme]] where $S$ is a [[scheme]] over $k$. The \textbf{absolute Frobenius} is the map $F^{ab}:(X,\mathcal{O}_X)\to (X,\mathcal{O}_X)$ which is the identity on the [[topological space]] $X$ and on the structure sheaves $F_*:\mathcal{O}_X\to \mathcal{O}_X$ is the $p$-th power map. This is not a map of $S$-schemes in general since it doesn't respect the structure of $X$ as an $S$-scheme, i.e. the diagram: $\displaystyle \begin{matrix} X & \stackrel{F^{ab}}{\to} & X \\ \downarrow & & \downarrow \\ S & \stackrel{F^{ab}}{\to} & S \end{matrix}$, so in order for the map to be an $S$-scheme morphism, $F^{ab}$ must be the identity on $S$, i.e. $S=Spec(\mathbb{F}_p)$. Now we can form the [[fiber product]] using this square: $X^{(p)}:=X\times_{S} S$. By the universal property of [[pullback]]s there is a map $F^{rel}:X\to X^{(p)}$ so that the composition $X\to X^{(p)}\to X$ is $F^{ab}$. This is called the \textbf{relative Frobenius}. By construction the relative Frobenius is a map of $S$-schemes. \hypertarget{for_sheaves_on_}{}\subsubsection*{{For sheaves on $C Ring ^{op}$}}\label{for_sheaves_on_} Let $p$ be a prime number, let $k$ be a field of characteristic $p$. For a $k$-ring $A$ we define \begin{displaymath} f_A: \begin{cases} A\to A \\ x\mapsto x^p \end{cases} \end{displaymath} The $k$-ring obtained from $A$ by scalar restriction along $f_k:k\to k$ is denoted by $A_{f}$. The $k$-ring obtained from $A$ by scalar extension along $f_k:k\to k$ is denoted by $A^{(p)}:=A\otimes_{k,f} k$. There are $k$-ring morphisms $f_A: A\to A_f$ and $F_A:\begin{cases} A^{(p)}\to A \\ x\otimes \lambda\mapsto x^p \lambda \end{cases}$. For a $k$-functor $X$ we define $X^{(p)}:X\otimes_{k,f_k} k$ which satisfies $X^{(p)}(R)=X(R_f)$. The \emph{Frobenius morphism} for $X$ is the transformation of $k$-functors defined by \begin{displaymath} F_X: \begin{cases} X\to X^{(p)} \\ X(f_R):X(R)\to X(R_f) \end{cases} \end{displaymath} If $X$ is a $k$-scheme $X^{(p)}$ is a $k$-scheme, too. Since the completion functor ${}^\hat\;:Sch_k\to fSch_k$ commutes with the above constructions the Frobenius morphism can be defined for [[formal scheme|formal k-schemes]], too. \hypertarget{InTermsOfSymmetricProducts}{}\subsubsection*{{In terms of symmetric products}}\label{InTermsOfSymmetricProducts} We give here another characterization of the [[Frobenius morphism]] in terms of symmetric products. Let $p$ be a prime number, let $k$ be a field of [[characteristic]] $p$, let $V$ be a $k$-vector space, let $\otimes^p V$ denote the $p$-fold tensor power of $V$, let $TS^p V$ denote the subspace of symmetric tensors, yielding the [[symmetric algebra]]. Then we have the symmetrization operator \begin{displaymath} s_V: \begin{cases} \otimes^p V\to TS^p V \\ a_1\otimes\cdots\otimes a_n\mapsto \Sigma_{\sigma\in S_p}a_{\sigma(1)}\otimes\cdots\otimes a_{\sigma(n)} \end{cases} \end{displaymath} and the linear map \begin{displaymath} \alpha_V \colon \begin{cases} V^{(p)} \to\otimes^p V \\ a\otimes \lambda\mapsto\lambda(a\otimes\cdots\otimes a) \end{cases} \end{displaymath} then the map $V^{(p)}\stackrel{\alpha_V}{\to}TS^p V\to TS^p V/s(\otimes^p V)$ is [[bijective]] and we define \begin{displaymath} \lambda_V \;\colon\; TS^p V\to V^{(p)} \end{displaymath} by \begin{displaymath} \lambda_V\circ s=0 \end{displaymath} and \begin{displaymath} \lambda_V \circ \alpha_V= id \end{displaymath} If $A$ is a $k$-ring we have that $TS^p A$ is a $k$-ring and $\lambda_A$ is a $k$-ring morphism. If $X=Sp_k A$ is the [[spectrum of a commutative ring]] we abbreviate $S^p X 0 S^p_k X \coloneqq Sp_k (TS^p A)$ and the following diagram is commutative. \begin{displaymath} \itexarray{ X &\stackrel{F_X}{\to}& X^{(p)} \\ \downarrow&&\downarrow \\ X^p &\stackrel{can}{\to}& S^p X } \end{displaymath} \hypertarget{ForEInfinityRings}{}\subsubsection*{{For $E_\infty$-Rings}}\label{ForEInfinityRings} \begin{defn} \label{EInfinityFrobenius}\hypertarget{EInfinityFrobenius}{} Let $E$ be a [[E-infinity ring]] and $p$ a [[prime number]]. Then the \emph{Frobenius morphism} on $R$ is the composite morphism of [[spectra]] \begin{displaymath} R \overset{\Delta_p}{\longrightarrow} (R \wedge \cdots \wedge R)^{t C_p} \overset{prod^{t C_p}}{\longrightarrow} R^{C_p} \end{displaymath} where \begin{enumerate}% \item $C_p = \mathbb{Z}/p\mathbb{Z}$ denotes the [[cyclic group]] of order $p$; \item $(-)^{t C_p}$ denotes the [[Tate spectrum]] of a spectrum with $C_p$-[[action]]; \item the [[smash product of spectra]] $R \wedge \cdots \wedge R$ is regarded with the $C_p$-action given by [[permutation]] of smash factors; \item $\Delta_p$ dentotes the \emph{[[Tate diagonal]]} map \item $prod^{t C_p}$ is the image of the $p$-fold product operation of the ring spectrum $prod \;\colon\; R \wedge \cdots \wedge R \to R$ under the [[(infinity,1)-functor]] which forms Tate spectra. \end{enumerate} \end{defn} (\hyperlink{NikolausScholze17}{Nikolaus-Scholze 17, def. IV.1.1}) \begin{example} \label{EInfinityFrobeniusReducesToOrdinaryFrobenius}\hypertarget{EInfinityFrobeniusReducesToOrdinaryFrobenius}{} Let $A \in CRing$ be an ordinary [[commutative ring]] and write $H A$ for its [[Eilenberg-MacLane spectrum]]. Then for $p$ a [[prime number]] the Frobenius homomorphism from def. \ref{EInfinityFrobenius} \begin{displaymath} H A \longrightarrow H A^{t C_p} \end{displaymath} coincides on the 0th [[stable homotopy group]] with the ordinary Frobenius homomorphism \begin{displaymath} A \longrightarrow A/p \end{displaymath} \end{example} (\hyperlink{NikolausScholze17}{Nikolaus-Scholze 17, example IV.1.1}) \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{for_fields_2}{}\subsubsection*{{For fields}}\label{for_fields_2} \begin{itemize}% \item The Frobenius morphism on algebras is always [[injective]]. Note that the Frobenius morphism of schemes (see below) is \emph{not} always a monomorphism. \item The [[image]] of the Frobenius morphism is the set of elements of $k$ with a $p$-th root and is sometimes denoted $k^{1/p}$. \item The Frobenius morphism is [[surjective]] if and only if $k$ is [[perfect field|perfect]]. \end{itemize} \hypertarget{AsElementsOfGaloisGroup}{}\subsubsection*{{As elements of the Galois group}}\label{AsElementsOfGaloisGroup} Some powers of the Frobenius morphism canonically induce elements in the [[Galois group]] (\ldots{}) Review of the standard story is for instance in (\hyperlink{Snyder02}{Snyder 02, section 1.5}). Further developments include (\hyperlink{DokchitserDokchitser10}{Dokchitser-Dokchitser 10}) If $\mathbb{F}_{p^n}$ is a [[finite field]],then $Gal(\mathbb{F}_{p^n}/\mathbb{F}_p)$ is [[generators and relations|generated]] by the Frobenius map $x\mapsto x^p$ (e.g. \hyperlink{Snyder02}{Snyder 02, lemma 1.5.10}). (..) See also at \emph{[[Artin L-function]]}. \hypertarget{for_schemes}{}\subsubsection*{{For schemes}}\label{for_schemes} For the purposes below $k$ will be a [[perfect field]] of [[characteristic]] $p${\tt \symbol{62}}$0$. \begin{itemize}% \item $X$ is [[smooth scheme|smooth]] over $k$ if and only if $F$ is a [[vector bundle]], i.e. $F_*\mathcal{O}_X$ is a free $\mathcal{O}_X$-module of rank $p$. One can study singularities of $X$ by studying properties of $F_*\mathcal{O}_X$. \item If $X$ is [[smooth scheme|smooth]] and [[proper scheme| proper]] over $k$, the sequence $0\to \mathcal{O}_X\stackrel{F^{ab}}{\to} F_*\mathcal{O}_X \to d\mathcal{O}_X\to 0$ is exact and if it [[split exact sequence|splits]] then $X$ has a lifting to $W_2(k)$. \end{itemize} \begin{prop} \label{}\hypertarget{}{} Let $X$ be a $k$-formal scheme (resp. a [[locally algebraic scheme]]) then $X$ is [[etale scheme|étale]] iff the [[Frobenius morphism]] $F_X:X\to X^{(p)}$is a monomorphism (resp. an isomorphism). \end{prop} The Frobenius as a morphism (natural transformation) of (affine) group schemes is one operation among other (related) operations of interest: \begin{remark} \label{}\hypertarget{}{} For any commutative affine [[group scheme]] $G$ the Frobenius- and the [[Verschiebung morphism]] correspond by ``completed [[Cartier duality|Cartier duality]]''; i.e. we have \begin{displaymath} \hat D(V_G)=F_{\hat D(G)} \end{displaymath} \end{remark} For a more detailed account of the relationship of Frobenius-, [[Verschiebung morphism|Verschiebung-]] and [[homothety morphism]] see \hyperlink{Hazewinkel}{Hazewinkel} \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[Artin-Schreier sequence]] \item [[Weil conjecture]] \item [[restricted Lie algebra]] \item [[shtuka]] \item [[cyclotomic spectrum]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} \begin{itemize}% \item [[Ferdinand Georg Frobenius]], Vol 2, around p. 719 of \emph{Gesammelte Abhandlungen}, Springer-Verlag, Berlin, 1968. \end{itemize} Lecture notes include \begin{itemize}% \item [[Günter Tamme]], section II 4.2 of \emph{[[Introduction to Étale Cohomology]]} \item [[James Milne]], section 27 of \emph{[[Lectures on Étale Cohomology]]} \end{itemize} Further discussion of the relation to the [[Galois group]] includes \begin{itemize}% \item [[Noah Snyder]], section 1.5 of \emph{Artin L-Functions: A Historical Approach}, 2002 (\href{http://www.math.columbia.edu/~nsnyder/thesismain.pdf}{pdf}) \item Tim Dokchitser, Vladimir Dokchitser, \emph{Identifying Frobenius elements in Galois groups} (\href{http://arxiv.org/abs/1009.5388}{arXiv:1009.5388}) \end{itemize} See also \begin{itemize}% \item Michel Demazure, \emph{[[lectures on p-divisible groups]]} \href{http://sites.google.com/site/mtnpdivisblegroupsworkshop/lecture-notes-on-p-divisible-groups}{web} \item [[Michiel Hazewinkel]], witt vectors. part 1, \href{http://arxiv.org/abs/0804.3888v1}{arXiv:0804.3888v1} \item Karen Smith, \emph{Brief Guide to Some of the Literature on F-singularities}, \end{itemize} Discussion in the context of [[power operations]] on [[E-infinity rings]] is in \begin{itemize}% \item [[Jacob Lurie]], \emph{[[Rational and p-adic Homotopy Theory]]} \end{itemize} Discussion for [[E-infinity rings]] via [[Tate spectra]] is due to \begin{itemize}% \item [[Thomas Nikolaus]], [[Peter Scholze]], \emph{On topological cyclic homology} (\href{https://arxiv.org/abs/1707.01799}{arXiv:1707.01799}) \end{itemize} A brief discussion in the context of algebraic geometry over rigs is in \begin{itemize}% \item [[William Lawvere]], \emph{Core Varieties, Extensivity, and Rig Geometry} , TAC \textbf{20} no.14 (2008) pp.497-503. (\href{http://www.tac.mta.ca/tac/volumes/20/14/20-14abs.html}{abstract}) \end{itemize} [[!redirects Frobenius morphisms]] [[!redirects Frobenius homomorphism]] [[!redirects Frobenius homomorphisms]] [[!redirects Frobenius endomorphism]] [[!redirects Frobenius endomorphisms]] [[!redirects Frobenius automorphism]] [[!redirects Frobenius automorphisms]] [[!redirects Frobenius map]] [[!redirects Frobenius maps]] \end{document}