\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{Frobenius reciprocity} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{category_theory}{}\paragraph*{{Category theory}}\label{category_theory} [[!include category theory - contents]] \hypertarget{representation_theory}{}\paragraph*{{Representation theory}}\label{representation_theory} [[!include representation theory - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{InRepresentationTheory}{In representation theory}\dotfill \pageref*{InRepresentationTheory} \linebreak \noindent\hyperlink{InCategoryTheory}{In category theory}\dotfill \pageref*{InCategoryTheory} \linebreak \noindent\hyperlink{InWirthmuellerContexts}{In Wirthm\"u{}ller contexts of six-operations yoga}\dotfill \pageref*{InWirthmuellerContexts} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{relation_to_frobenius_laws_in_frobenius_algebras}{Relation to Frobenius laws (in Frobenius algebras)}\dotfill \pageref*{relation_to_frobenius_laws_in_frobenius_algebras} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{References}{References}\dotfill \pageref*{References} \linebreak \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} The term \emph{Frobenius reciprocity} has a meaning \begin{itemize}% \item \hyperlink{InRepresentationTheory}{In representation theory} \item \hyperlink{InCategoryTheory}{In category theory}. \end{itemize} (For different statements of a similar name see the disambiguation at \emph{[[Frobenius theorem]]}.) \hypertarget{InRepresentationTheory}{}\subsubsection*{{In representation theory}}\label{InRepresentationTheory} In [[representation theory]], \textbf{Frobenius reciprocity} (sometimes \emph{Frobenious}) is the statement that the [[induction functor]] for [[group representation|representations of groups]] (or in some other [[algebraic categories]]) is [[left adjoint]] to the [[restriction]] functor. Sometimes it is used for a [[decategorification|decategorified]] version of this statement as well, on [[characters]]. Specifically for $H \hookrightarrow G$ an [[subgroup]] inclusion, there is an [[adjunction]] \begin{displaymath} (Ind \dashv Red) \;\colon\; Rep_G \stackrel{\overset{Ind}{\leftarrow}}{\underset{Red}{\longrightarrow}} Rep_H \end{displaymath} between the [[categories]] of $G$-[[representations]] and $H$-[[representations]], where for $\rho$ an $H$-representation, $Ind(\rho) \in Rep(G)$ is the [[induced representation]]. Sometimes also the \emph{[[projection formula]]} \begin{displaymath} Ind(Red(W) \otimes V) \simeq W \otimes Ind(V) \end{displaymath} is referred to as \emph{Frobenius reciprocity} in representation theory (e.g. \href{http://planetmath.org/frobeniusreciprocity}{here on PlanetMath}). See below the general discussion \hyperlink{InWirthmuellerContexts}{in Wirthm\"u{}ller contexts}. \hypertarget{InCategoryTheory}{}\subsubsection*{{In category theory}}\label{InCategoryTheory} In [[category theory]], Frobenius reciprocity is a condition on a pair of [[adjoint functors]] $f_! \dashv f^*$. If both categories are [[cartesian closed]], then the adjunction is said to satisfy \textbf{Frobenius reciprocity} if the right adjoint $f^* \colon Y \to X$ is a [[cartesian closed functor]]; that is, if the canonical map $f^*(B^A) \to f^*(B)^{f^*(A)}$ is an [[isomorphism]] for all objects $B,A$ of $Y$. Each of the functors $-^A$, $-^{f^*A}$ and $f^*$ has a [[left adjoint]], so by the calculus of [[mates]], this condition is equivalent to asking that the canonical ``[[projection formula|projection]]'' morphism \begin{displaymath} f_!(C \times f^*A) \to (f_! C) \times A \end{displaymath} is an isomorphism for each $A$ in $Y$ and $C$ in $X$. This clearly makes sense also if the categories are [[cartesian monoidal category|cartesian]] but not necessarily [[closed category|closed]], and is the usual formulation found in the literature. It is equivalent to saying that the adjunction is a [[Hopf adjunction]] relative to the cartesian monoidal structures. This terminology is most commonly used in the following situations: \begin{itemize}% \item When $f^*$ and $f_!$ are the [[inverse image|inverse]] and [[direct image]] functors along a map $f$ in a [[hyperdoctrine]]. Here $S$ is a category and $P \colon S^{op} \to Cat$ is an $S$-[[indexed category]] such that each category $P X$ is [[cartesian closed]] and each functor $f^* = P f$ has a [[left adjoint]] $\exists_f$ ([[existential quantifier]], also written $f_!$). Then $P$ is said to satisfy Frobenius reciprocity, or the \textbf{Frobenius condition}, if each of the [[adjunctions]] $\exists_f\dashv f^*$ does. If the categories $P X$ are cartesian but not closed then it still makes sense to ask for Frobenius reciprocity in the second form above, and in that case its logical interpretation is that $\exists x . (\phi \wedge \psi)$ is equivalent to $(\exists x.\phi) \wedge \psi$ if $x$ is not free in $\psi$. \item When $f^*$ is the [[inverse image]] part of a [[geometric morphism]] between [[(n,1)-topoi]] and $f_!$ is a [[left adjoint]] of it, if the [[adjunction]] $f_!\dashv f^*$ satisfies Frobenius reciprocity, then the geometric morphism is called [[locally n-connected (n+1,1)-topos|locally (n-1)-connected]]. In particular, if $n=0$ so that we have a [[continuous map]] of [[locales]], then a left adjoint $f_!$ satisfying Frobenius reciprocity makes it an [[open map]], and if $n=1$ so that we have 1-[[topoi]], then it is [[locally connected geometric morphism|locally connected]] (see also \emph{[[open geometric morphism]]}). This usage of ``Frobenius reciprocity'' is sometimes also extended to the dual situation of [[proper map]]s of locales and topoi. \end{itemize} \hypertarget{InWirthmuellerContexts}{}\subsubsection*{{In Wirthm\"u{}ller contexts of six-operations yoga}}\label{InWirthmuellerContexts} Generally, an [[adjoint triple]] $(f_! \dashv f^\ast \dashv f_\ast)$ between [[symmetric monoidal category|symmetric]] [[closed monoidal categories]] is called a \emph{[[Wirthmüller context]]} (\hyperlink{May05}{May 05}) of \emph{[[six operations]]} yoga, if $f^\ast$ is a strong [[closed monoidal functor]]. \begin{prop} \label{}\hypertarget{}{} In a [[Wirthmüller context]], the projection formula/Frobenius reciprocity holds as a [[natural equivalence]] \begin{displaymath} \overline{\pi} \;\colon\; f_!(f^\ast(B) \otimes A) \stackrel{\simeq}{\longrightarrow} B \otimes f_! A \end{displaymath} \end{prop} \begin{proof} For all $A \in \mathcal{X}$ and $B,C \in \mathcal{Y}$ we have by the $(f_! \dashv f^\ast)$-[[adjunction]] and the tensor$\dashv$hom-adjunction a [[commuting diagram]] of the form \begin{displaymath} \itexarray{ \mathcal{Y}(f_! ((f^\ast B) \otimes A),\, C) & \stackrel{ \mathcal{Y}(\overline{\pi}(A,B), C) }{ \longrightarrow } & \mathcal{Y}(B \otimes f_! A, \, C ) \\ \downarrow^{\mathrlap{\simeq}} && \downarrow^{\mathrlap{\simeq}} \\ \mathcal{X}(A, [(f^\ast B), (f^\ast C)]) &\stackrel{}{\longrightarrow}& \mathcal{X}(A, f^\ast [B,C]) } \,. \end{displaymath} By naturality in $A$ and by the [[Yoneda lemma]] this shows that $\overline{\pi}$ is an equivalence precisey if $f^\ast$ is strong closed. \end{proof} \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{relation_to_frobenius_laws_in_frobenius_algebras}{}\subsubsection*{{Relation to Frobenius laws (in Frobenius algebras)}}\label{relation_to_frobenius_laws_in_frobenius_algebras} The name ``Frobenius'' is sometimes used to refer to other conditions on adjunctions, known as ``Frobenius laws''. The formal structure of the Frobenius law appears in the notion of [[Frobenius algebra]], in the axiom which relates multiplication to comultiplication, and recurs in another form isolated by Carboni and Walters in their studies of cartesian bicategories and bicategories of relations. Namely, if $\delta \colon 1 \to \otimes \Delta$ denotes the diagonal transformation on a cartesian bicategory (e.g., $Rel$), with right adjoint $\delta^\dagger$, then there is a canonical map \begin{displaymath} \delta \delta^\dagger \stackrel{\phi}{\to} (1 \otimes \delta^\dagger)(\delta \otimes 1) \end{displaymath} mated to the coassociativity isomorphism \begin{displaymath} (1 \otimes \delta)\delta \to (\delta \otimes 1)\delta \end{displaymath} and the \textbf{Frobenius law} here is the assumption that \emph{the 2-cell $\phi$ is an isomorphism}. (There are two Frobenius laws actually; the other is that a similar canonical map \begin{displaymath} \delta \delta^\dagger \stackrel{\phi'}{\to} (\delta^\dagger \otimes 1)(1 \otimes \delta), \end{displaymath} mated to the inverse coassociativity, is also an isomorphism. However, it may be shown that if one of the Frobenius laws holds, then so does the other; see the article [[bicategory of relations]].) It is very easy to make a slip and call the Frobenius law ``Frobenius reciprocity'', perhaps all the more because there are close connections between the two. One example occurs in the context of bicategories of relations, as follows. Given a locally posetal [[cartesian bicategory]] $B$ and any object $c$ of $B$, one may construct a hyperdoctrine of the form \begin{displaymath} \hom_B(i-, c)\colon Map(B)^{op} \to Semilat \end{displaymath} where $i: Map(B) \to B$ is the inclusion, and $Semilat$ is the 2-category of meet-semilattices. Here $r \in \hom(i b, c)$ is thought of as a relation from $b$ to $c$, and for a map $f: a \to b$, the relation $f^\ast r$ is the pulling back \begin{displaymath} f^\ast r \coloneqq (a \stackrel{f}{\to} b \stackrel{r}{\to} 1) \end{displaymath} along $f$, and one may show that $f^\ast-$ preserves finite local meets. Indeed, the pushforward or quantification along $f$ takes $q: a \to 1$ to \begin{displaymath} \exists_f q \coloneqq (b \stackrel{f^\dagger}{\to} a \stackrel{q}{\to} 1) \end{displaymath} and $\exists_f \dashv f^\ast$ because $f^\dagger$ is \emph{right} adjoint to the map $f$. Because $f^\ast-$ is a right adjoint, it preserves local meets. Frobenius reciprocity in this context, ordinarily written as \begin{displaymath} r \wedge \exists_f q = \exists_f (f^\ast r \wedge q), \end{displaymath} can then be restated for the hyperdoctrine $\hom_B(i-, c)$; it takes the form \begin{displaymath} r \wedge q f^\dagger = (r f \wedge q)f^\dagger \end{displaymath} for any map $f: a \to b$ and predicates $q \in \hom(a, c)$, $r \in \hom(b, c)$. Meanwhile, recall that a \textbf{bicategory of relations} is a (locally posetal) cartesian bicategory in which the Frobenius laws hold. \begin{prop} \label{FLtoFR}\hypertarget{FLtoFR}{} Frobenius reciprocity holds in each hyperdoctrine $\hom_B(i-, c)$ associated with a bicategory of relations. \end{prop} \begin{proof} One first proves that a bicategory of relations is a compact closed bicategory in which each object $b$ is self-dual. The unit here is given by \begin{displaymath} \eta_b = (1 \stackrel{\varepsilon^\dagger}{\to} b \stackrel{\delta}{\to} b \otimes b) \end{displaymath} and the counit by \begin{displaymath} \theta_b = (b \otimes b \stackrel{\delta^\dagger}{\to} b \stackrel{\varepsilon}{\to} 1). \end{displaymath} Using this duality, each relation $r: b \to c$ has an opposite relation $r^{op} \colon c \to b$ given by \begin{displaymath} c \stackrel{c \otimes \eta_b}{\to} c \otimes b \otimes b \stackrel{1 \otimes r \otimes 1}{\to} c \otimes c \otimes b \stackrel{\theta_c \otimes b}{\to} b. \end{displaymath} It may further be shown that in a bicategory of relations, if $f: a \to b$ is a map, then its right adjoint $f^\dagger$ equals the opposite $f^{op}$. Therefore Frobenius reciprocity becomes the equation \begin{displaymath} r \wedge q f^{op} = (r f \wedge q)f^{op} \end{displaymath} but in fact this is just a special case of the more general modular law, which holds in a bicategory of relations as shown \href{http://rfcwalters.blogspot.com/2009/10/categorical-algebras-of-relations.html}{here} in a blog post by Walters. The modular law in turn depends crucially upon the Frobenius laws. \end{proof} Thus, in this instance, \emph{Frobenius reciprocity follows from the Frobenius laws}. \begin{prop} \label{FRtoFL}\hypertarget{FRtoFL}{} In a locally posetal cartesian bicategory, the Frobenius laws follow from Frobenius reciprocity. \end{prop} \begin{proof} Again, Frobenius reciprocity in a (locally posetal) cartesian bicategory $B$ means that for any map $f: a \to b$ and any two relations $q \in B(a, c)$, $r \in B(b, c)$, the canonical inclusion \begin{displaymath} (q \wedge r f)f^\dagger \leq q f^\dagger \wedge r \end{displaymath} is an equality. One (and therefore both) of the Frobenius laws will follow by taking the following choices for $f$, $q$, and $r$: \begin{displaymath} f = \delta_x, \qquad q = \varepsilon_{x}^{\dagger} \otimes 1_x, \qquad r = \varepsilon_x \otimes 1_x \otimes \varepsilon_{x}^{\dagger} \end{displaymath} where $\delta_x: x \to x \otimes x$ is the diagonal map and $\varepsilon_x: x \to 1$ is the projection. The remainder of the proof is best exhibited by a string diagram calculation, which is given here: [[Frobenius-reciprocity.pdf:file]]. \end{proof} \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \begin{example} \label{}\hypertarget{}{} Generally, for $\mathbf{H}$ a [[topos]] and $f \;\colon\; X \longrightarrow Y$ any [[morphism]], then the induced [[base change]] [[etale geometric morphism]] \begin{displaymath} (f_! \dashv f^\ast \dashv f_\ast) \;\colon\; \mathbf{H}_{/X} \to \mathbf{H}_{/Y} \end{displaymath} has [[inverse image]] $f^\ast$ a [[cartesian closed functor]] and hence (see there) exhibits Frobenius reciprocity. \end{example} \hypertarget{References}{}\subsection*{{References}}\label{References} The term `Frobenius reciprocity', in the context of hyperdoctrines, was introduced by Lawvere in \begin{itemize}% \item F.W. Lawvere, \emph{Equality in hyperdoctrines and comprehension schema as an adjoint functor}, Proceedings of the AMS Symposium on Pure Mathematics XVII (1970), 1-14. \end{itemize} Lawvere defines Frobenius reciprocity by either of the two equivalent conditions (see ``Definition-Theorem'' on p.6), and notes that ``one of these kinds of identities is formally similar to, and reduces in particular to, the Frobenius reciprocity formula for permutation representations of groups'' (p.1). A textbook source is around lemma 1.5.8 in \begin{itemize}% \item [[Peter Johnstone]], \emph{[[Sketches of an Elephant]]} \end{itemize} General discussion in the context of projection formulas in [[monoidal categories]] (not necessarily cartesian) is in \begin{itemize}% \item H. Fausk, P. Hu, [[Peter May]], \emph{Isomorphisms between left and right adjoints}, Theory and Applications of Categories , Vol. 11, 2003, No. 4, pp 107-131. (\href{http://www.tac.mta.ca/tac/volumes/11/4/11-04abs.html}{TAC}, \href{http://www.math.uiuc.edu/K-theory/0573/FormalFeb16.pdf}{pdf}) \end{itemize} Manifestations of the Frobenius reciprocity formula, \hyperlink{InCartegoryTheory}{in the sense of category theory}, recur throughout mathematics in various forms (push-pull formula, projection formula); see for example this Math Overflow post: \begin{itemize}% \item Andrea Ferretti, Ubiquity of the push-pull formula, MO Question 18799, March 20, 2010. \href{http://mathoverflow.net/questions/18799/ubiquity-of-the-push-pull-formula}{(link)} \end{itemize} Further MO discussion includes \begin{itemize}% \item \href{http://mathoverflow.net/questions/132272/wrong-way-frobenius-reciprocity-for-finite-groups-representations}{Wrong-way Frobenius reciprocity for finite groups representations} \end{itemize} [[!redirects Frobenius reciprocity]] [[!redirects Frobenious reciprocity]] [[!redirects Frobenius law]] [[!redirects Frobenius condition]] [[!redirects Frobenius axiom]] \end{document}