\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{G-norm} \hypertarget{gnorms}{}\section*{{G-norms}}\label{gnorms} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definitions}{Definitions}\dotfill \pageref*{definitions} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{families_of_gpseudonorms}{Families of G-pseudonorms}\dotfill \pageref*{families_of_gpseudonorms} \linebreak \noindent\hyperlink{in_weak_foundations}{In weak foundations}\dotfill \pageref*{in_weak_foundations} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} A G-norm is like a [[normed vector space|norm]] (or better, an [[F-norm]]) on a [[vector space]], but on an [[abelian group]] instead. Just as the [[topological structure]] of any [[topological vector space]] may be specified by a family of F-pseudonorms, so the topological structure of any [[topological abelian group]] may be specified by a family of G-pseudonorms. A G-norm on an abelian group is equivalent to a translation-invariant [[metric space|metric]] on it. \hypertarget{definitions}{}\subsection*{{Definitions}}\label{definitions} Let $G$ be an [[abelian group]]. A \textbf{G-pseudonorm}, or \textbf{G-seminorm}, on $G$ is a [[function]] $\rho\colon G \to \mathbb{R}$ that satisfies the following conditions: \begin{itemize}% \item $\rho(0) \leq 0$, where $0$ is the [[identity element]] of $G$; \item $\rho(x + y) \leq \rho(x) + \rho(y)$ for all $x, y$ in $G$; and \item $\rho(-x) \leq \rho(x)$ for all $x$ in $G$. \end{itemize} From these axioms, the following simple conditions (sometimes included in the definition) follow: \begin{itemize}% \item $\rho(x) \geq 0$ for all $x$ in $G$ \item $\rho(0) = 0$; \item $\rho(-x) = \rho(x)$; and \item $\rho(n x) \leq {|n|} \rho(x)$ for every [[integer]] $n$ and all $x$ in $G$. \end{itemize} A G-pseudonorm is \textbf{definite} (or \textbf{postive-definite}, but we have positivity anyway) if in addition: \begin{itemize}% \item $\rho(x) \ne 0$ for all $x \ne 0$ in $G$. \end{itemize} And of course, from that follows: \begin{itemize}% \item $\rho(x) \gt 0$ for all $x \ne 0$ in $G$. \end{itemize} A \textbf{G-norm} is a definite G-pseudonorm. A G-(pseudo)norm is \textbf{homogeneous} (or $\mathbb{Z}$-homogeneous) if we have: \begin{itemize}% \item $\rho(n x) \geq {|n|} \rho (x)$ for infinitely many integers $n$, for all $x$ in $G$. \end{itemize} It then follows that \begin{itemize}% \item $\rho(n x) = {|n|} \rho (x)$ for every integer $n$ and all $x$ in $G$. \end{itemize} While homogeneous G-norms are particularly nice, we need general G-pseudonorms if we wish to describe arbitrary [[topological abelian groups]]. \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} Given any translation-invariant [[metric space|(pseudo)metric]] $d$ on $G$, we get a G-(pseudo)norm $\rho$ on $G$ by $\rho(x) \coloneqq d(0,x)$. Conversely, given any G-(pseudo)norm $\rho$, we get a translation-invariant (pseudo)metric $d$ by $d(x,y) \coloneqq \rho(y - x)$. These operations are [[inverses]]. (We could add a `quasi-' in here if we drop the rule that $\rho(-x) = \rho(x)$. But note that G-quasinorms and translation-invariant quasimetrics on an [[abelian monoid]] do \emph{not} correspond.) If $G$ happens to be the underlying abelian group of a real (or complex) [[vector space]] $V$, then any [[F-norm|F-(pseudo)norm]] on $V$ is a G-(pseudo)norm on $G$, but not conversely. Similarly, any [[normed vector space|(pseudo)norm]] on $V$ is a homogeneous G-(pseudo)norm on $G$, but not conversely. The obvious norms on $\mathbb{Z}^n$, seen as a subset of $\mathbb{R}^n$ with one of its usual structures as a [[Banach space]], is a homogeneous G-norm. Any abelian group has a G-norm given by $\rho(x) = 1$ whenever $x \ne 0$ (and of course $\rho(x) = 0$ otherwise). Except on the [[trivial group]], this is not homogeneous. It corresponds to the [[discrete metric]] on $G$. Given any [[topological abelian group]] $G$ and any [[neighbourhood]] $N$ of $0$, let $B \coloneqq N \cap -N = \{ x \;|\; x \in N,\; -x \in N \}$; then $B$ is also a neighbourhood of $0$. Let $B_0 \coloneqq G$, let $B_1 \coloneqq B$, and recursively choose $B_{n^+}$ so that $x + y + z \in B_n$ whenever $x, y, z \in B_{n^+}$ (which is possible since addition is continuous). Then \begin{displaymath} \rho (x) \coloneqq \inf \Big\{ \sum_{i = 1}^m \inf \{ 2^{-n} \;|\; x_i \in B_n \} \;\Big|\; x = \sum_{i = 1}^m x_i \Big\} \end{displaymath} defines a G-pseudonorm on $G$ such that, given any [[net]] $(x_\nu)$ in $G$, we have that $\rho(x_\nu)$ converges to $0$ if and only if $x_\nu \in N$ holds eventually. \hypertarget{families_of_gpseudonorms}{}\subsection*{{Families of G-pseudonorms}}\label{families_of_gpseudonorms} Any family of G-pseudonorms on an abelian group $G$ makes $G$ into a [[topological abelian group]] (TAG), and every TAG structure on $G$ arises in this way. However, different collections of G-pseudonorms may determine the same topological structure. In one direction, let $G$ be an abelian group, and suppose that we equip $G$ with an arbitrary collection $D$ of G-pseudonorms. Every G-pseudonorm determines a pseudometric, and these pseudometrics generate a [[gauge space]] structure on $G$ and thence a [[topological structure]]. Because the pseudometrics involved are translation-invariant, we have in fact made $G$ into a TAG. In more detail: A [[subset]] $U$ of $G$ is [[open subset|open]] if and only if, for every $x$ in $U$, for some [[list]] $\rho_1,\ldots,\rho_n$ from $D$ and some [[real number]] $\epsilon \gt 0$, for every $y$ in $G$, if $\rho_i(y - x) \lt \epsilon$ for every $i$, then $y \in U$. Then you can check that these subsets form a topology relative to which the group operations are continuous. It may also be nice to look at the [[uniform space]] structure on $G$; the gauge and the TAG structure determine the same uniform structure. Explicitly, a [[binary relation]] $\sim$ on $G$ is an [[entourage]] if and only if, for some list $\rho_1,\ldots,\rho_n$ from $D$ and some real number $\epsilon \gt 0$, for every $x$ and $y$ in $G$, if $\rho_i(y - x) \lt \epsilon$ for every $i$, then $x \sim y$. Then these entourages form the uniform structure on $G$ which is compatible with the group structure and whose underlying topological structure is the one above. Conversely, let $G$ be a TAG. Then the collection of all [[continuous map|continuous]] G-pseudonorms $\rho\colon G \to \mathbb{R}$ generates the topological structure on $G$. The proof is complicated, but essentially it amounts to this: applying the final example from the Examples section above to each neighbourhood of $0$ (or at least to each neighbourhood in a neighbourhood base), check that the G-pseudonorms defined are continuous, and check that there are enough of them to generate a topology at least as strong as the actual topology on $G$; the converse is immediate. In other words, the hard thing that has to be checked is that there are enough continuous G-pseudonorms. \hypertarget{in_weak_foundations}{}\subsection*{{In weak foundations}}\label{in_weak_foundations} The only really tricky part is the proof that there are enough continuous G-pseudonorms to generate the topology on any TAG $G$. The development seems to be [[predicative mathematics|predicative]] over $\mathbb{R}$; you can't speak of the collection of \emph{all} continuous G-pseudonorms if you are being strongly predicative, but you really only need one for each neighbourhood in a neighbourhood base of $G$. However, it is not [[constructive mathematics|constructive]] or predicative over $\mathbb{N}$, because the infima may not exist. Also, we use [[dependent choice]]. The same problems arise in proving that every [[topological vector space]] structure is generated by some family of [[F-norm|F-pseudonorms]]; on the other hand, [[locally convex spaces]] (which are generated by [[pseudonormed space|pseudonorms]]) are better behaved. There may be a similar theory of locally convex TAGs based on homogeneous G-pseudonorms, but I haven't looked into this. It would be natural, in constructive mathematics, to attempt the development with [[locale|localic]] groups. Even in [[classical mathematics]], however, there may be (and are) [[sober space|sober]] TAGs which cannot be interpreted as localic groups, such as the additive group of [[rational numbers]] with its topology as a [[subspace]] of the [[real line]]. Probably we have to start by requiring a G-pseudonorm to be a [[continuous map]] from the localic group $G$ to the [[locale of real numbers]], rather than starting with a discrete abelian group, but I haven't looked into this further. \hypertarget{references}{}\subsection*{{References}}\label{references} \emph{[[HAF]]}, Chapters 22 and 26. See especially Section 26.29 for the last Example. [[!redirects G-norm]] [[!redirects G-norms]] [[!redirects G-pseudonorm]] [[!redirects G-pseudonorms]] [[!redirects G-seminorm]] [[!redirects G-seminorms]] \end{document}